Viscous Silicate SOFC Glass Sealants

Viscous Sealant Benefits

- Viscous sealants allow flexibility in SOFC stack design • Fracture is avoided at SOFC operating temperatures
- providing reliable electricity generation

Target Properties

- Glass transition temperatures below 600 °C
- Sealing below 900 °C
- Thermal stability for 40,000 hrs at operating temperatures between 650 and 850 °C in O₂ and H_2 environments
- Low electrical conductivity

Objectives

- Develop new glass compositions meeting DOE target properties
- Assess flow behavior of glass powders and frits
- Study interfacial reactions with SOFC stack components to monitor compatibility
- Understand crystallization behavior within SOFC OT range for long times (1500 hrs)

Compositional Modification

 Desirable flow behavior and Tg have been maintained while lowering alkali content

Heat Treatment at 850 °C

• Glasses on alumina or 8YSZ heat treated for 500, 1000, or 1500 hrs in air

Alumina

• Gallio-silicate glasses crystallize extensively at 850 °C after 504 hrs

• Germano-silicate glass forms crystals at the interface with alumina. Na⁺ and K⁺ ions diffuse to the interface.

 Germano-silicate glasses retain ~70% amorphous phase after 1500 hrs at 850 °C to sustain viscous sealant behavior

No fractures in seal

before polishing

Test Seal with Aluminized SS & 8YSZ • Germano-silicate glasses between 8YSZ and aluminized stainless steel (SS) heat treated for 500 hrs in air

Glass SS

• Germano-silicate glasses form interfaces at the SS surface. Fracture is not observed at the interface suggesting these glasses are compatible with SOFC stack components.

are mostly immobile.

Alkali

(mol %)

20

• Two main silicate systems are pursued: gallio-silicates & germano-silicates

• Modifications have been toward low or non-alkali compositions

Gallio-silicates

Hot-stage microscope (HSM) images of gallio-silicate glass powder at listed temperatures

Gallio-boro-silicates

Gallio-boro-silicates 2

Alkali	B ₂ O ₃	Тд	CTE (ppm/K)
(mol %)	(mol %)	(°C)	(100-400 °C)
5	5 - 10	610 - 630	8 - 10

Alkal (mol

8YSZ

• Germano-silicate glass pellets on 8YSZ substrates at 850 °C for 500, 1000, and 1500 hrs. Interaction with 8YSZ is minimal for some glasses, while some continuously dissolve the substrate

• Microprobe data indicates an SS interface rich in Ge and Sr ions. Al ions appear to diffuse into the glass while Fe and Cr ions

• After 1000 hrs at 850 °C the diffusion of Zr and Y ions into the glass is not observed. Preferential diffusion of K⁺ and Na⁺ ions is not observed. Some germano-silicate glasses appear stable with 8YSZ.

Heat Treatment at 650 °C

• Glasses were heat treated at 850 °C for 30 min, cooled to 650 °C, then held for 500 hrs. • Gallio-silicate glasses do not exhibit extreme crystallization at 650 °C. This compositional series appears promising for viscous sealants at the low end of the OT range.

•Germano-silicate glasses partially crystallize, yet retain a high amorphous content. It appears this compositional series may be used within the entire OT range

Gallio-silicates

Future Work

- SOFC OT range.

Mark O. Naylor, James E. Shelby and Scott T. Misture Kazuo Inamori School of Engineering, Alfred University, Alfred, New York **Research supported by U.S. DOE NETL: Award Number DE-NT0005177**

High Temperature Silicates

B ₂ O ₃	Tg	CTE (ppm/K)	T _{seal}
(mol %)	(°C)	(100-400 °C)	(°C)
0	590 - 770	9 - 12	

	<u>Ge</u>	<u>rmano-si</u>	licates	
Alkali	B ₂ O ₃	Тд	CTE (ppm/K)	T _{seal}
(mol %)	(mol %)	(°C)	(100-400 °C)	(°C)
10	10	540 - 590	7.5 - 10	≈ 650
550 °C	670 °C	748 °C	794 °C	350 °C
HSM images	of germano-sil	icate glass powo	ler at listed temper	atures
550 °C	650 °C	750 °C	820 °C	350 °C

HSM images of non-alkali germano-silicate glass powder at listed temperature

	<u>Germar</u>	<u>no-silicat</u>	<u>es 2</u>	
Alkali	B_2O_3	Tg	CTE (ppm/K)	
(mol %)	(mol %)	(°C)	(100-400 °C)	
5	10	610 - 640	8 -9	

Statistical Design Matrix

i	B_2O_3
%)	(mol %)
5	5 - 10

Germano-silicates

Conclusions

• Amorphous content of Germano-silicate glass powders remains high after heat treatment at 650 °C and 850 °C.

- These glasses appear to be excellent candidates for viscous sealants at any
- temperatures within the SOFC OT range • Some glasses exhibit minimal interaction with 8YSZ substrates
- These glasses may provide excellent composite sealants with 8YSZ powders
- Test seals suggest excellent compatibility with SOFC stack components

• Gallio-silicate glass powders crystallize extensively at 850 °C, yet may be used as viscous sealants with SOFC stacks operating at the low end of the OT range.

 Modified gallio-silicate and germano-silicate glasses approach the DOE target properties. New compositions may exhibit desirable crystallization behavior.

• The compositions within the statistical compositional design should offer more glasses for viscous sealing.

• Crystallization behavior will be studied at intermediate temperatures within the

• Extensive testing in wet H_2 environments will be performed.

• Newly formulated glasses will be tested for compatibility with SOFC stack components.

