

Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship between Structure, Surface Chemistry and Oxygen Reduction.

Lincoln J. Miara¹, L. F. J. Piper², Jacob N. Davis¹, Laxmikant Saraf³, Tiffany Kaspar³, Soumendra N. Basu^{1,4}, K. E. Smith^{1,2}, K. Ludwig^{1,2}, Uday Pal^{1,4}, and Srikanth Gopalan^{1,4*}

films.

- ² Department of Physics, Boston University, 590 Commonwealth Ave.,, Boston, MA 02215

Motivation:

- Cathode surfaces vary in structure and composition with changes in operating history
- Can examine these changes by combining traditional electrochemistry with soft and hard x-ray spectroscopy techniques.

- Sr/(Sr+La)

Model

Critical Angle

- (15) (2008) 151904.

Extended X-Ray Absorption Fine Structure (EXAFS) Sr-O Nearest neighbor — Room Temp Bulk.mu

0.02

- strontium and manganese edges.
- modes.
- be actual O loss or due to increased vibrations at high temperature.
- Working on data collected in June with better statistics.

¹ Division of Materials Science and Engineering, Boston University College of Engineering, Brookline, MA 02446

³ Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352

⁴ Department of Mechanical Engineering, Boston University College of Engineering, Boston, MA 02215

• Soft x-ray measurements on sealed samples reveal the changing nature of the surface cations.