Proton Conductor Based Solid Oxide Fuel Cells S. Elangovan, F. Zhao, J. Hartvigsen, D. Ramirez, and D. Larsen 11th Annual SECA Workshop July 27, 2010 Pittsburgh, PA Supported by DOE SBIR Grant: DE-FG02-06ER84595 #### Outline - Thermodynamic Analysis Shows Higher Efficiency for Proton Cells compared to Oxygen Cells - Stability addressed by the use of composite electrolyte - Anode supported composite electrolyte cell shows good performance - Stability in high CO₂ containing fuel demonstrated ### **Driving Force Comparison** ■ High driving force even at high fuel utilization Max. Efficiency Comparison Proton Cell Oxygen Cell #### **Single Stage** V #### **Two Stage** (# BaCeO₃ Proton Conductivity and Transference Number - Highest conductivity range from 0.01 to 0.016 in 700° to 800°C range - ~ half the oxygen ion conductivity of 8YSZ - Ionic transference number >0.95 at 700°C ### Comparison of Driving Force Proton cell shows negligible change in driving potential compared to Oxygen cell **Current Density, A/cm2** ■ Even with lower OCV, the Nernst potential crosses over at utilization of >10% #### Instability of Perovskite ■ Stability of BaCeO₃ in hydrocarbon based fuel is a major known issue $$BaCeO_3 + CO_2 = BaCO_3 + CeO_2$$ $$BaCeO_3 + H_2O = Ba(OH)_2 + CeO_2$$ Composite of BCY + YDC for Improved Stability #### **Enhanced Thermochemical Stability** Ceramic Composite over BCY Thermogravimetric analysis in Air + 5% CO2 - Stability in CO₂+Air mixture (TGA) - BCY + YDC (crushed sintered disk) ## Composite Stability in Syngas Stability in CO-CO₂-H₂-H₂O mixture ## BaCeO₃ vs Composite Stability ■ Exposure to syngas at 900°C ### Exposure to Syngas at 700°C ■ As low as 10 vol% Ceria shows improvement in stability # Anode supported thin film cell Cell before testing Dense thin film (~15 μm) BCY+YDC composite electrolyte Cell after testing Anode: 50 wt% NiO and 50 wt% (BCY+YDC) **Electrolyte surface** #### Anode supported P-SOFC #### Stability in Syngas Fuel: Simulated high utilization (90%CO₂ balance humidified H₂) #### **Short Stack Test** (Anode supported cell) - Good stability demonstrated - Need to improve cell fabrication process to achieve high performance #### Conclusions - Proton SOFC shows high efficiency possibility - Practical compositions requires operating temperatures of 700°C or below to realize high t_H - Thin, supported electrolyte cells demonstrated - Chemical stability in syngas can be improved by the composite approach - Cell fabrication process need to be improved to achieve high quality cells (no pin-holes etc.) for performance equivalent to button cells