# Proton Conductor Based Solid Oxide Fuel Cells

S. Elangovan, F. Zhao, J. Hartvigsen, D. Ramirez, and D. Larsen

11<sup>th</sup> Annual SECA Workshop July 27, 2010

Pittsburgh, PA

Supported by DOE SBIR Grant: DE-FG02-06ER84595



#### Outline

- Thermodynamic Analysis Shows Higher Efficiency for Proton Cells compared to Oxygen Cells
- Stability addressed by the use of composite electrolyte
- Anode supported composite electrolyte cell shows good performance
- Stability in high CO<sub>2</sub> containing fuel demonstrated



### **Driving Force Comparison**



■ High driving force even at high fuel utilization



Max. Efficiency Comparison
Proton Cell
Oxygen Cell

#### **Single Stage**

V





#### **Two Stage**

(





# BaCeO<sub>3</sub> Proton Conductivity and Transference Number



- Highest conductivity range from 0.01 to 0.016 in 700° to 800°C range
- ~ half the oxygen ion conductivity of 8YSZ
- Ionic transference number >0.95 at 700°C



### Comparison of Driving Force



 Proton cell shows negligible change in driving potential compared to Oxygen cell

**Current Density, A/cm2** 

■ Even with lower OCV, the Nernst potential crosses over at utilization of >10%

#### Instability of Perovskite

■ Stability of BaCeO<sub>3</sub> in hydrocarbon based fuel is a major known issue

$$BaCeO_3 + CO_2 = BaCO_3 + CeO_2$$

$$BaCeO_3 + H_2O = Ba(OH)_2 + CeO_2$$

Composite of BCY + YDC for Improved Stability



#### **Enhanced Thermochemical Stability**

Ceramic Composite over BCY

Thermogravimetric analysis in Air + 5% CO2



- Stability in CO<sub>2</sub>+Air mixture (TGA)
  - BCY + YDC (crushed sintered disk)



## Composite Stability in Syngas



Stability in CO-CO<sub>2</sub>-H<sub>2</sub>-H<sub>2</sub>O mixture



## BaCeO<sub>3</sub> vs Composite Stability



■ Exposure to syngas at 900°C



### Exposure to Syngas at 700°C



■ As low as 10 vol% Ceria shows improvement in stability



# Anode supported thin film cell Cell before testing



Dense thin film (~15 μm) BCY+YDC composite electrolyte

Cell after testing



Anode: 50 wt% NiO and 50 wt% (BCY+YDC)

**Electrolyte surface** 



#### Anode supported P-SOFC





#### Stability in Syngas



 Fuel: Simulated high utilization (90%CO<sub>2</sub> balance humidified H<sub>2</sub>)

#### **Short Stack Test**

(Anode supported cell)



- Good stability demonstrated
- Need to improve cell fabrication process to achieve high performance



#### Conclusions

- Proton SOFC shows high efficiency possibility
- Practical compositions requires operating temperatures of 700°C or below to realize high t<sub>H</sub>
- Thin, supported electrolyte cells demonstrated
- Chemical stability in syngas can be improved by the composite approach
- Cell fabrication process need to be improved to achieve high quality cells (no pin-holes etc.) for performance equivalent to button cells