

Objectives

- Identify the tolerance limits of SOFCs for trace impurities in syngas.
- Predict the lifetime of the anode for a given impurity level.
- Propose remedies for impurity effects.
- Develop and Implement new SOFC characterization methods.

Methodology

- Multi-scale, multidisciplinary approach.
- In-house fabrication of high performance solid oxide fuel cells.
- Characterization of contaminant effects using in situ and ex-situ techniques
- Numerical modeling for analysis of degradation mechanisms.
- Validation and calibration of models using accelerated tests.
- Prediction of cell life time during long operation at very low impurities levels.
- Improve tolerance of SOFC anode to sulfur and phosphorus containing syngas.

Anode Materials Development

- Improvement in performance is achieved for in-house button cells.
- Sulfur tolerance of anode supported cell was improved by impregnation of doped ceria.
- Large planar cells are being manufactured for testing under realistic stack conditions.

Co-sintered anode supported cell fabricated at WVU

Button cells manufactured at WVU showed performance comparable to that of commercial cells

Effect of Syngas Trace Contaminants on SOFC Anode Performance

SEM micrographs of the top anode cross-section after exposure to dry H₂ with 10 ppm PH₃ at 800°C. (a) The cell with 0.5 A cm⁻² load for about 120 h at 1000x magnification, (b) the cell without load for about 140 h at 500x magnification. The thickness of secondary phase layer is more for no (no H₂O) load case.

- In situ Van der Pauw measurements showed no significant change in the anode conductivity when exposed to PH_3 .
- TEM characterization of SOFC anodes showed existence of secondary phases at Ni-YSZ interface

Power density vs time at constant cell voltage. Rate of power loss is not a definite function of the cell over voltage when cell is operated under syngas + 10 ppm PH_3

550 h electrochemical load. syngas+10 ppm Hg, no degradation according to electrochemical data

NiO ribbon grains observed at the interface of Ni and YSZ

to crack.

R. Bajura (P.I.), I. Celik (Tech. P.I.), H. Finklea, B. Kang, X. Liu, E. Sabolsky, X. Song, N. Wu, J. Zondlo

+1.581e-01 +1.390e-01 +1.198e-01 +1.198e-01 +1.007e-01 +8.150e-02 +8.150e-02 +4.320e-02 +4.320e-02 +4.892e-03 +4.892e-03 -1.426e-02

Modeling

• Parametric studies were conducted using in-house simulation tools to predict the electrochemical and structural performance of SOFC

experiments

Predicted degradation of anode material in a planar cell due to contaminant along the fuel flow and across anode thickness under 5ppm of PH3 exposure (a) 510h (b) 7410h (c) 12410h (d) 19410.

- A new phenomenological model is developed to simulate the typical SOFC anode degradation due to syngas trace impurities.
- The degradation model is shown to accurately predict the long term performance when calibrated with the accelerated tests.

temperatures and concentrations.

Contact: Dr. Ismail Celik **Department of Mechanical and Aerospace Engineering** West Virginia University, Morgantown, WV 26506 Ph: 304 293 3209 Fax: 304 293 6689 Email: ismail.celik@mail.wvu.edu URL: http://nift.wvu.edu/

