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Advantages of IFCC

• Operations very similar to pulverized coal (pc)-fired 
boilers.

• Nearer-term technology.
• Higher efficiencies – 45% when firing coal, over 50% 

with natural gas (NG) supplement.
• Half the water usage of a typical steam-based plant 

because of the Brayton cycle.
• Slagging heat exchangers are self-cleaning:

– Much lower loss of heat transfer because of fouling
– Much less overconstruction
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Air-Blown Slagging Furnace System (SFS) 
Configuration Modified for Biomass Biofiring



United Technologies Research Center (UTRC) 
“Tubes-in-a-Box” High-Temp. Heat Exchanger (HTHX)

• Made process air at 950°C  
and 150 psig for over 2000 
hr.

• 1090°C and 100 psig 
maximum.

• Corrosion is a secondary 
issue – slag additives are 
very promising.

• Major issue – thermal 
shock of ceramic tiles.
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Open View of Radiant Air Heater (RAH) 
Test Panel
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Large RAH Panel Inside the 
Slagging Furnace
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Scanning Electron Microscopy (SEM) 
Analyses of MA754 HTHX Joint

• Corrosion very low over 
2000+ hours of exposure.

• Corrosion rate somewhat 
masked by residual 
processing contaminants.

• Residual braze compound 
may weaken the joint.
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Summary of Tubes-in-a-Box Testing

• Heat transfer meets design criteria with Monofrax tiles.
• Standard process air 1750°F and 150 psig.
• 2000°F process air reached for short time at 100 psi.
• Slag layer less than 1 mm thick on panels.
• Thermal shock is biggest problem for ceramic panels.
• Corrosion of panels is secondary issue:

– Additives may substantially reduce corrosion.
– Prevent dripping to prevent channeling of slag. 
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Bolted MA956 HTHX Tube

• Bolts machined from 
MA956.

• Mica/Inconel gaskets.
• 500 hours of service with 

five cycles has caused no 
leaks.
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MA956 Tube Installed in the HTHX

Concerns with Bare-Tube Testing

• Uneven heat flux may cause 
warping.

• Insufficient heat-transfer rates 
to the pressurized air may 
cause excessive surface 
temperatures.

• Slag deposits may corrode.
• Slag deposits may insulate.



Infrared Image and Temperature Distribution of the Upper 
Portion of the Middle Tube in the HTHX While Firing on 

Natural Gas
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HTHX Tubes After August 2001 Test

• Slag layer self-cleaning.
• 3 mm thick maximum.
• Reduces heat flow by 15% as 

compared to 50% for sintered 
ash.
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MA754 Direct Exposure

• Surface cooled to 
2000°F

• 1.5-mm-thick 
detached slag layer 
developed on 
surface

• No nickel or chrome 
in the detached slag 
layer

• 20-µm-thick 
attached slag layer

• 10 µm chromia 
• Corrosion layer 

under attached slag
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Summary of Bare-Tube HTHX Testing

• Heat removal rates are increased by a factor of 4 to 6 by 
removing the ceramic panels.

• This change will lower the cost of the heat exchanger by 
a factor of 10 over the tubes-in-a-box design.

• Initial ash deposit is thin and sintered, which protects the 
tube from rapid corrosion with a minimum of insulation.

• A flowing slag layer is created within a few millimeters of 
the surface, minimizing insulating value and becoming 
self-cleaning.
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Bare-Tube Testing Summary (continued)

• Both MA754 and MA956 have very low corrosion rates.
• MA754 chromia layer partially separates on cycling.
• MA956 alumina layer remains attached on cycling.
• Most likely industries interested in first trying the 

technology are fossil energy-intensive industries, not the 
power sector.

• Later testing in an aluminum melter showed severe 
corrosion of MA956 due to halogens, less corrosion of 
MA754.
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Static Corrosion of MA754 and 
MA956 with Illinois No. 6 Ash 

• Corrosion rates of both oxide dispersion-strengthened 
(ODS) alloys are commercially
acceptable with Illinois No. 6 
ash.

• MA754 corrosion rate of 160
µm/year at 1149°C.

• MA956 corrosion rate of 60 
µm/year.
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Alloy Scales After 100-hour Exposures
Illinois No. 6 Slag – 1200°C
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MA754 Chromium Content
Flowing Illinois No. 6 Slag – 100 hours
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• Chromium depletion 
excessive for MA754 
at 1100°C or above.

• Slag layer lost on 
cooling, shortening 
life.

• Slag reduces 
chromium loss during 
a single cycle.
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Metal
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MA956 Aluminum Content
Flowing Illinois No. 6 Slag – 100 hours

• Oxygen penetration and 
aluminum depletion 
minimal at up to 1200°C 
under flowing slag.

• Slag layer retained on 
temperature cycling.

• Slag may reduce 
aluminum depletion.
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Alumina Layer on MA956 
Before Corrosion Testing
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MA956 Tube with Oxide Layer Above Slag 
Drip Point After 1050°C Coal/Hog Fuel Test
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MA956 Tube with Attached Slag Layer
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Conclusions on 100-hour Flowing Coal–
Biomass Slag Corrosion of MA956

• No surface recession measurable for any test.
• Slag layer remains attached after temperature cycling 

for all slags except coal–switchgrass at 1150°C.
• Some alumina dissolved into attached slag but not 

spalled slag.
• Attached slag layer protects alumina scale upon cycling.
• Slag layer reduces thickness of alumina scale.
• No measurable aluminum depletion from alloy.
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Transient Liquid-Phase (TLP) Bonding 

• Welding of advanced alloys is not possible because critical structures are     
destroyed.

• TLP bonding uses a reactive braze that diffuses away from the joint.
• Bonding alloys need to have lower melting points, be soluble, and not form 

intermetallics.

Joint



EERC . . . The International Center for Applied Energy Technology

Articulated Clamping System

• Initial tests done with rods 
polished flat.

• Clamp made from low CTE 
metal (Mo).

• Ceramic hemispheres used 
to articulate the pieces, 
which is necessary because 
of the thinness of the foils.

• Later joints done with thin 
sandwiches of APM and 
APMT and with complex 
curves.
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TLP Bonding MA956–MA956

• Joints typically have 
80% of alloy ultimate 
tensile strength at 
room temperature -
no recrystallization 
treatments.

• Strengths not tested 
at high temperatures

• Breaks are 
intergranular.
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TLP Bonding MA956–MA956

• Oxide 
dispersions 
remain in
intergranular 
boundaries.

• Dispersed 
grains are 
yttrium 
aluminum 
oxides.
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Joining APMT to CM247LC
Tests of Multiple Joining Alloys

• Room-temperature ultimate 
tensile strength results for joints 
made with four joining alloys.

• All samples broke within the 
APMT, showing the joints are 
stronger than the APMT.

• One of the foils evaporates 
from the structures – patent 
application filed.
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Joining APMT to CM247LC 
950°C Stress Rupture Tests of Rods

• Two joints for each of the 
four joining alloys were 
tested at 950°C using the 
100-hour APMT rupture 
stress.

• All samples broke 
similarly, within the APMT, 
not the joint.

• APMT was much weaker 
than anticipated.
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Joining APM to CM247LC 
Thin-Layer Sandwiches

• 1-mm- and 4-mm-thick layers of 
APM (not dispersion-strengthened) 
were sandwiched between rods of 
CM247LC.

• All high-temperature ruptures 
occurred in the APM.

• APM strengthened by metal 
diffusion from the CM247LC.

• Thick layers (4 mm) were not 
strengthened all the way through, 
but thin layers (1 mm) were.

• Diffusion increased lifetime of thin 
layer by 20 times or more.

• Different joining alloys had different 
effects on interdiffusion. 

CM247LC APM
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Joining APMT to CM247LC 
Microstructure of Joints

• SEM photo top, x-ray 
map on bottom.

• Needle growth and 
interdiffusion create a 
joint stronger than the 
APMT.

• Nickel diffuses up to 
700 µm into APMT.

• Iron diffuses 200 µm 
into the CM247LC.

APMT

CM247LC
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Joining Thin APMT Layers to 
Actual CM247LC Turbine Structures

• Joined actual turbine ring 
segments of CM247LC 
with APM and APMT 
sheet in between.

• Surfaces were curved.
• Joints were stronger than 

the APM or APMT.
• APM sheet was not 

strengthened as rods 
were.
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CM247LC to APMT Bonding Conclusions

• TLP bonding has been successfully used to bond 
CM247LC to APM and APMT.

• Articulation of the joints is necessary because of the very 
thin nature of the joining foil.

• All failures were within the FeCrAl, usually well away 
from the diffusion-affected zone.

• APM tubing was dramatically strengthened within the 
diffusion-affected zone, but APM and APMT plate were 
not.

• Some joining alloys diffuse through the structures and 
evaporate from their surfaces in what we call evaporative 
metal bonding.
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