

Inertia Welding

Applications

It is possible, by using proper procedures and with proper inertia/friction welding equipment, to generate repeatable full strength weld applications.

Bend and pressure tests show the strength of Inertia Welded transitions.

Bi-metal fittings used in pressure vessels, vacuum and heat pipe systems.

Stainless steel to aluminum in cryogenic applications.

Inertia Welding Specialists

Ordinance applications call for unique combinations.

Bi-Metal Combinations to Aluminum

9310 ZIRCONIUM NANOPHASE

304 4140 COPPER

1018 4340 INCO

INVAR 6063 AL

6AL 4V TI A286

3 AL 2.5 V TI TUNGSTEN

MONEL 316 SS

PALLINEY 15-5 SS

MONEL 410 SS

Bi-Metal Combinations to Inco

17-4 SS NITRONIC

316 SS 4140

RENE 41 2219 AL

WASPALOY 6063 AL

MAR-M 247 6061 AL

UDIMET TITANIUM

HASTELOY X SILVER

ASTROLOY

Bi-Metal Combinations to Copper

INVAR 347 SS

6061 AL SILVER

4140 316 SS

304 SS 5 N 5 ALUM

4043 TITANIUM

INCO

15-5 SS

KOVAR

IRIDIUM

Bi-Metal Combinations to Stainless

4130 9310

NITRONIC INCO

1018 HAFNIUM

C1117 INVAR

LEDLOY TITANIUM

TUNGSTEN

ZIRCONIUM

KOVAR

Bi-Metal Combinations to Titanium

MOLYBDENUM

6061 AL

321 SS

304 SS

2219 AL

NIOBIUM

ZIRCONIUM

COPPER

BRONZE

INCO

Bi-Metal Combinations of Miscellaneous Materials

MONEL TO VANADIUM

HIPERCO 50 TO AL 4750

TUNGSTEN TO ZIRCONIUM

PALLNEY 7 TO NICKEL

STELLITE 6B TO EVB4

TANTALUM TO NIOBIUM

NIOBIUM TO ZIRCONIUM

NIOBIUM TO MAR-M 247

15-5 SS TO MAR-M 247

SILVER TO INCO

NITRALLOY "N" TO MARAGING 250

NASA's Mars Rover Spirit

Titanium to Aluminum NASA Component

Inertia Welding Specialists

Titanium to Stainless Bend Test

ACTUAL	YIELD	YIELD	TENSILE	TENSILE
AREA	LOAD	PSI	LOAD	PSI
	@.2%	@MAX	@MAX	@MAX
.19644	11250	57300	18150	92400

Inertia Welding Specialists

Tantalum to Niobium to Zirconium Bend Test

Titanium to Aluminum to Tool Steel

Stainless to Aluminum Cryogenic Port Adapter

Stainless to Aluminum Space Shuttle Fuel Cell Cap

Stainless to Aluminum Transition Fitting

Titanium to 9310 Aircraft Gear Weight Reduction Program

Inco to 2219 Aluminum

Titanium or Stainless to Aluminum VCR Fitting

Titanium or Stainless to Aluminum Fluid Coupler

Ø3.50 Copper to Ø4.250 Aluminum
Hi-Voltage Electrical Contact

Copper to Titanium or Stainless to Copper

Inertia Welding Specialists

Copper to Aluminum

Inertia Welding Specialists

INCO or GMR Turbine to 4140 Shaft

NITRALLOY "N" to MARAGING 250
Hughes (Boeing)Helicopter
Main Rotor Drive Shaft
AH64 Apache

Inertia/friction welding utilizes a high pressure forge force. Because of the high pressure, the metal, as it becomes heated by friction, is forged together with no melt product being produced, no chemical change and a very narrow heat affected zone. This allows for a variety of metals that have different melt or sensitive chemistries to be joined with resulting properties that are excellent and comparable to the base metal.

BI-METAL WELDMENT 8630 TO INCO 713C

BI-METAL Zirconium to Titanium

Bi-Metal Weldment 355 Stainless to 5083 Aluminum

Bi-Metal Weldment 6AL 4V Titanium to 304 Stainless

Inertia Welding

Applications