

UK/US Collaboration in Energy R&D

Advanced Materials Program

FE Materials Conference 27th May 2010

Progress with Phase 2 Tasks

Pittsburgh, 27 May 2010

Approved Phase 2 Tasks

- Steam Oxidation
- Materials for Advanced Boilers and Oxy-combustion Systems
- Gas Turbine Materials Life Assessment and Non-Destructive Evaluation
- Oxide Dispersion Strengthened Alloys

1990	1999	2000	2001	2002	2003	2004	2005	2000	2007	2000	2009	2010	2011	2012
1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012

Phase 2 Task 1 Steam Oxidation

What is the effect of pressure on the steam oxidation of alloys relevant to fossil-fuelled USC steam power plants?

What is the effect of heat flux on steam oxidation and scale exfoliation on alloys relevant to fossilfuelled USC steam power plants?

What is the effect of specimen geometry on the oxidation kinetics, oxide scale morphology and spallation properties?

Is chromia evaporation a concern in USC steam turbines?

What is the agreed-upon standard laboratory test method for steam oxidation testing, and how can its validity be confirmed?

Can a compendium of oxide microstructures provide useful information with respect to predicting component lifetimes and recognizing corrosion mechanisms?

Can existing alloys be modified to be either castable or less expensive, while maintaining acceptable properties?

Partners

- US NETL, University of Pittsburgh, Carpenter Corporation
- UK NPL, Cranfield, Doosan Power Systems
- Integrated work programme developed
- First results Pittsburgh May 2010

Steam Oxidation Participants and Roles

	Laborat	Laboratory Test			Assessment	Standardicad	Maasuramant	Power
	Ambient Pressure	Elevated Pressure	Alloy or Sample Supply	Modelling	of geometry & heat flux effects	Standardised test method	Measurement uncertainty	Industry Experience
NPL								
Cranfield								
Doosan								
RWE								
NETL								
Carpenter								
UPitt								

Steam Oxidation Deliverables

- Review of the effect of pressure and heat flux on the steam oxidation
- Standard test method for steam oxidation testing
- Modified model of scale exfoliation for component lifetime prediction incorporating heat flux
- Reliable oxidation kinetics for candidate alloys including dependence on pressure, and heat flux
- Report on the inter-comparison exercise
- Database of information generated during the collaboration
- Verification of Cr evaporation model with respect to gas velocity
- Completion of ingot modelling (Mar 2011) and provide cast material samples (Jan 2012)
- Completion of alloy modelling and development of matrix of proposed compositions (Mar 2010), and provide material samples of alloys with best predicted performance and most promising data from initial testing (Jan 2012)

Pittsburgh, 27 May 2010

Phase 2 Task 2 Boiler Corrosion

What is the range of anticipated environments in advanced boiler systems? And how does oxy-fired ash differ from ash from air-fired systems?

What is the agreed-upon standard laboratory test method for boiler corrosion testing, and how can its validity be confirmed?

How can we further develop our understanding of the behavior of current and candidate materials for boilers operating under advanced conditions to become better informed for suitable material selection?

What is the performance of candidate coating systems for superheaters and reheaters in advanced boiler systems?

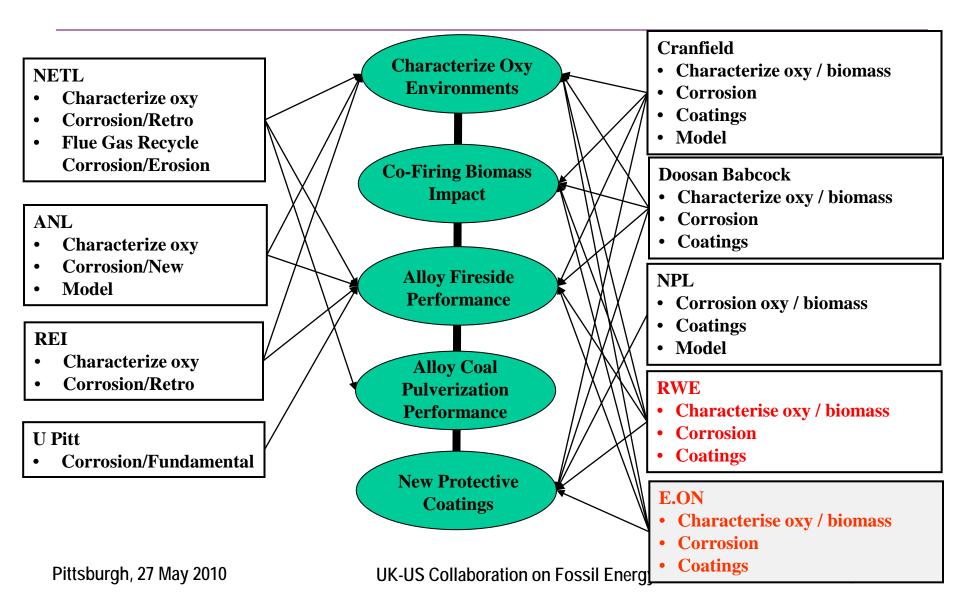
What is the performance of candidate piping systems in oxy-firing boilers for recycle flue gas?

What is the best way to share test results between collaboration partners?

Partners

- US NETL, University of Pittsburgh, REI, ANL
- UK Doosan Power Systems, Cranfield, NPL
- Integrated work programme developed
- First results Pittsburgh May 2010

Pittsburgh, 27 May 2010


Boiler Corrosion Participants and Role

	Environment Modeling &	Power Industry	Standardized	Corrosio	on Tests	Coatings	Alloy or Sample	Database	
	Characterization	Experience	Test Method	Lab	Field	Coatings	Supply	Dulubuse	
NETL									
ANL									
REI									
UPitt									
Doosan									
Cranfield									
NPL									

- Report on the assessment of environments anticipated in advanced boiler systems.
 - Gas Composition from Process Models
 - Ash Characterization
 - Pilot Scale Testing (deposit compositions, deposition rates, gas compositions)
- Report on the inter-comparison exercise
- Compendium of materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler and oxy-fired power systems

- Identification and performance of candidate coating systems for protection of superheaters/reheaters in advanced boiler systems
- Compendium of materials performance data from laboratory exposures for flue gas recycle piping in oxy-fuel boiler systems
- Database of information generated during the collaboration

Phase 2 Task 3 GT Materials Life Assessment & NDE

Task 3: Objectives

Component life prediction

- Access materials performance in multiple simulated environments
- Develop models for deposition/gas phase chemistry along with thermo-kinetics for establishment of corrosion maps
- To use the modified models to predict alloy/coating degradation in specificallydesigned tests
- To identify the fuel/operating conditions and the optimal candidate alloy and coating combinations

Partners:

UK

Cranfield University NPL Siemens Turbomachinery

Non destructive evaluation

- Need to develop rapid and reliable NDE techniques for inspection of gas turbine hot gas path components
- Utilize 2D and 3D NDE technologies to establish their sensitivity and limitations in detecting degradation and delamination in EB-PVD and APS TBCs.
- A multi layered model of thermal diffusivity will be used to develop a methodology for measuring the thermal properties of TBC systems

US

Siemens Energy ANL NETL Pittsburgh ORNL

Pittsburgh, 27 May 2010

Component Life Prediction Activities

Materials Performance Evaluation

- To assess of the passage of contaminants (related to deposition, corrosion and erosion in gas turbines) through the hot gas paths of different IGCC system options; from gasifier through various gas cooling and cleaning options to the gas turbine.
- To identify the fuel/operating conditions and the optimal candidate alloy and coating combinations which are most appropriate to future power systems that use gas turbines fired on wide range of potential fuels.

Component Life Prediction

- To improve models for predicting the fate of trace contaminants within gas turbines (and the effect of fuel composition and turbine operating parameters), including linking deposition / gas phase chemistry models to the latest published versions of models for hot corrosion of alloys/coatings in gas turbines
- To develop a model capable of thermo-kinetic modelling of contaminant flux and extrapolation for high temperatures/high pressures for the establishment of corrosion maps for high temperature metallic and ceramic systems.
- To use the modified models to predict alloy/coating degradation in specifically-designed tests, and for available test cases to validate the model predictions

Develop rapid and reliable NDE techniques for inspection of gas turbine hot gas path components, coated with different types of TBCs.

- Two optical imaging methods (mid-IR reflectance and polarized optical backscatter) and pulsed thermal-imaging will be evaluated to establish their sensitivity and limitations in detecting degradation and delamination in EB-PVD and APS TBCs.
- 3D NDE technologies, including optical coherence tomography (OCT), confocal microscopy and thermal tomography (developed recently at Argonne), will be investigated for directly imaging the depth variation of the TBC degradation.
- The development of novel thermal barrier coatings (TBCs) with self-diagnostic properties will be continued, focusing on the development of remote luminescence sensing for monitoring the temperature of turbine component materials
- During the course of TBC cyclic testing, a fluorescence technique will be used to monitor the stresses developed in the thermally grown oxide of the TBC system, backed up by a simple thermography system to identify coating delamination locations
- A multi layered model of thermal diffusivity will be used to develop a methodology for measuring the thermal properties of TBC systems

Pittsburgh, 27

Boundaries for Environmental Testing

1.540

Below

Water

Tube

Water

Tube

Slag

	Coal Gasification P	rocess	es		
	Process		HTW	Shell	Texaco
	Syngas				
	Components				
	H2	%vol	33.97%	31.42%	39.37%
	CH4	%vol	3.92%	0.01%	0.06%
	CO	%vol	43.84%	63.04%	45.39%
	CO2	%vol	16.94%	1.00%	13.18%
	N2	%vol	0.50%	3.41%	2.00%
	Ar	%vol	0.00%	1.10%	0.00%
	C2H6	%vol	0.83%	0.00%	0.00%
	C2H4	%vol	0.00%	0.00%	0.00%
	C3+	%vol	0.00%	0.00%	0.00%
	H2S and COS*	%vol	0.00%	0.00%	0.00%
	Total	%vol	100.00%	99.98%	100.00%
	* H2S and COS	ppmv	20	20	20
	On creating of Characteria				
- ·	Operating Characteri	Fluidized	Entrain a d	Entrained	
Coal	Туре		Bed	flow	flow
	туре	React	Deu	11000	11000
gasification	Number of Gasifiers	ors	2	1	1
Susmeation				Dry	
feed			Dry	Pulverize	
feed	Coal feed type		Crushed	d	Slurry
				Lockhop	
information			Lockhopp	per	
			er screw	pneumati	
	Coal feeding system		conveyer	с	Pumping
	Gasification temp				
	(min)	С		1,500	1,260
	Gasification temp				
	(max)	С	1,000	2,000	1,540
	Carbon conversion		93.00%	99.50%	98.50%
				Water Wall	Refractor
	Conifier lining		Refractory		
	Gasifier lining Raw gas temp to		Refractory	refactory	У
	IN AW DASTERNO (O				
	SGC (min)	с	850	900	1,260

Raw gas temp to

Radiant SGC design

Convection SGC

Dry particulate

Solid wastes

collection

SGC (max)

Radiant SGC location

С

900

Fire tube

cyclone

filler

Ash/Char

900

Above

Water

Tube

Water

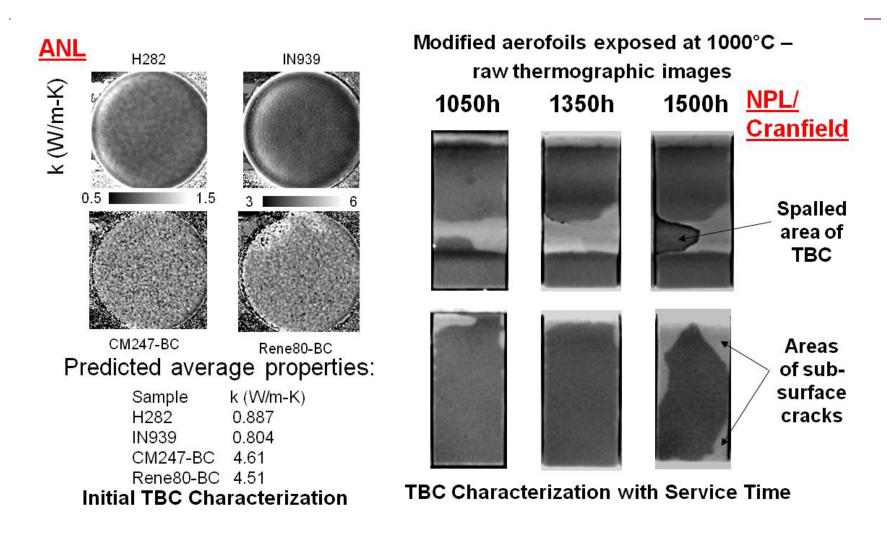
Tube

cyclone

filler

Slag

Contaminant analysis


Fuel type	Company Ref. Fuel	Biogas	Landf	ill gas	Poor quality nat. gas	Pipeline nat. gas	Refinery gases & L		LPG
Net Calorific value (MJ/Kg)	48.16	4 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70-80
	Maximum allo	wable conc	entration fr	om ALL so	urces on fuel equiv	alent basis, p	om (mass)		
V	1.00	0.08	0.20	0.40	0.60	0.80	1.00	1.20	1.40
Na + K	0.60	0.05	0.10	0.20	0.30	0.50	0.60	0.70	0.80
Ca + Mg	1.00	0.10	0.20	0.40	0.60	0.80	1.00	1.20	1.40
Pb	0.50	0.04	0.10	0.20	0.30	0.40	0.50	0.60	0.70
Zn	1.00	0.10	0.20	0.40	0.60	0.80	1.00	1.20	1.40
Hg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	3000	249	622	1240	1860	2490	3110	3730	4630
Li	0.50	0.04	0.10	0.20	0.30	0.40	0.50	0.60	0.70
SiO2	0.04	0.003	0.008	0.016	0.024	0.032	0.042	0.05	0.058
F+ Cl+ Br+ I	1.00	0.10	0.20	0.40	0.60	0.80	1.00	1.20	1.40
Other non- combustibles Incl Ash	100	8	20	41	62	83	103	124	145

Data being summarized to establish limits for gas compositions and contaminants for **IGCC** environments

NDE Efforts for TBC Characterization

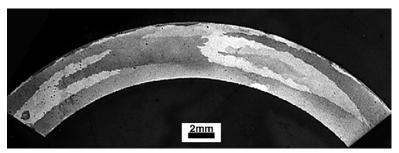
Phase 2 Task 4 ODS Alloys

Aim - To produce a capped tube to header demonstrator as a step towards a single tube heat exchanger

- Improve tube creep properties by a variety of forming means –
 (microstructure modifications achieved in the UK to be creep tested in the US)
- Achieve practical, tested ODS-ODS and ODS-dissimilar metal joints in a number of geometries
- Re-qualify commercial production of ODS alloys
- Investigate the effectiveness of selective laser melting to produce seam welds and layers

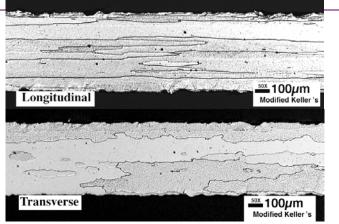
Partners

- US UCSD, ORNL, Interface Welding, MER Corp, UNDEERC, Iowa State
- UK Liverpool University, TWI, Cranfield, RWE, Siemens
- Dour Metal
- Integrated work programme developed
- First results Pittsburgh May 2010



	Task 1 Alloy Properties	Task 2 Forming	Task 3 Joining	Task 4 SLM	Task 5 Coatings	Task 6 Braze Joints
UCSD						
ORNL						
Dour Metal						
Interface Welding						
MER Corp						
UDEERC, ND						
Iowa State, Iver						
Liverpool (UK)						
TWI (UK)						
Siemens (US)						
RWE (UK)						
Cranfield (UK)						

Task 1: ODS Tube Desired structure



ODM-751, Onion-skin grain structure

In ODS MA956, coarse, secondary recrystallized, grain structure was only possible after extreme cold-working via flow forming.

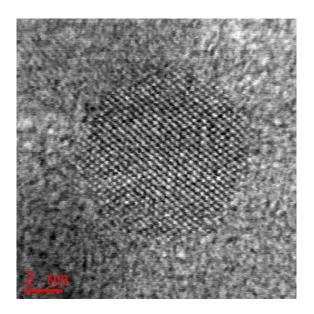
Flow forming does NOT produce any fibering.

Cold-work achieved via undesirable crosssection reduction. Explore alternates to preserve cross-section

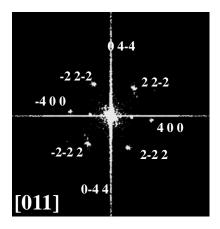
MA956, flow formed grain structure

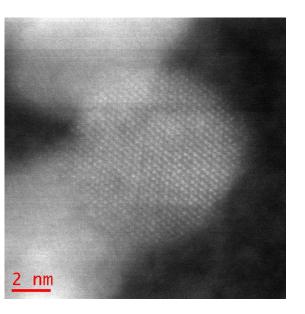
MA956, starting tube 0.25" thick wall. *flow formed* tube 0.03-0.04"

UK-US Collaboration on Fossil Energy R&D - Advanced Materials, Phase 2



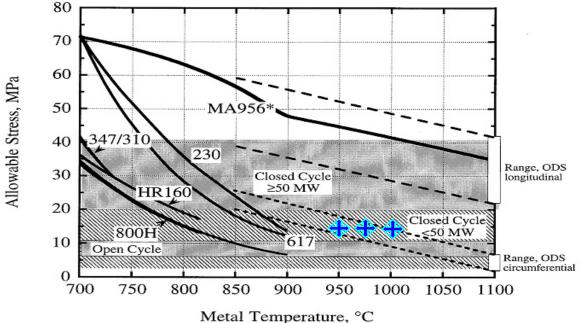
Task 4 ODS Alloys


High resolution electron microscopy to determine sequence of oxide dispersion transformations


with time and temperature and link with secondary recrystallisation

behaviour.

Cubic -Y₂O₃

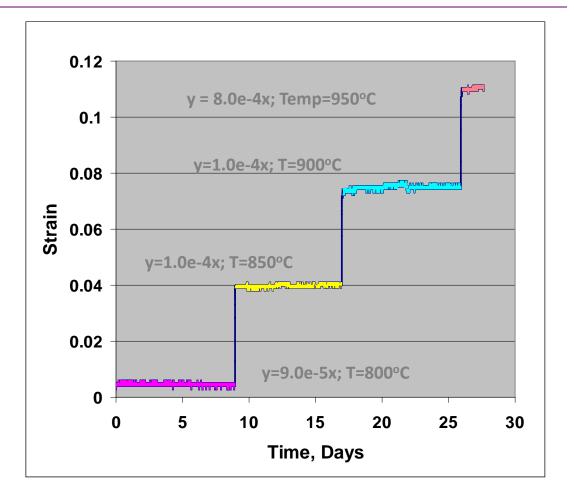


Task 2: Creep Life Assessment for New ODS Alloys

Objective: Establish long term hoop creep property database for ODS alloys

Data plotted upon a minimum of one year exposure at temperature & stress

Current hoop creep metrics for *flow formed* MA956 tubes


Pittsburgh, 27 May 2010

MA956 Tube Joint Incremental Creep Test

Joint #3, 2ksi Stress, Test in Air, OK

Pittsburgh, 27 May 2010

Phase 2 Next Steps

Workshop –
Pittsburgh, May 2010

• Workshop in the UK in Autumn 2010