

NATIONAL ENERGY TECHNOLOGY LABORATORY

Next Generation Energy Storage Materials

Todd Gardner, Yueying Fan and Victor Abdelsayed Office of Research & Development

Outline

- Overview
- Milestones
- Background
- Goals & Objectives
 - Materials
 - Nanoscale Synthesis
 - Intercalation Energy Storage
 - Next Generation Energy Storage Materials
 - Na, Na₂ and Na₃ Ion Materials
 - Na Ion Performance
 - Mg Ion Materials
- Conclusions
- Future Plans

Overview

Timeline

- Start: Oct. 1, 2009
- Finish: Sept. 30, 2010
- 70% complete

Budget

- Total FY10 project funding
 - \$150K
- Funding received in FY10
 - \$145K

Materials

- $Na_xFe(PO_4)_yF_z$
- $Mg_xMo_6S_8$
- Na_xTi₂O₄

Challenges

- Grid-scale energy storage
- Low manufacturing costs
- Use of abundant, low cost materials
- Long cycle life
- Solid-state material designs

Collaborators

 Discussions with potential RUA partners

Milestones

• FY09

-N/A

FY10

- Complete procurement of an automated battery testing system
- Complete synthesis of a series of nanoscale cathode electrode materials
- Complete an initial series of performance tests on the synthesized nanoscale cathode electrode materials

Addressing the Challenge of Grid Scale Energy Storage

- U.S. generating capacity: 1,088 GW
 - 85% of U.S. power generation utilizes <u>fossil</u> resources
- U.S. storage capacity: 22 GW (pumped hydro)
- Today's grid connects electricity where it is needed and large stationary grid energy storage adds electricity when it is needed
- New Needs¹:
 - Distributed power
 - PEV, PEHV
 - Renewable peak shaving
 - Power quality and grid management

Fossil Energy and The Modern Grid

Energy Storage Technologies

Large stationary grid scale battery technologies have power and energy capacity ratings that support fossil energy power production applications...

Project Goals

Addressing the Gaps in Grid-Scale Energy Storage Solutions for Fossil Fuel Power Production to...

- Improve the efficiency of <u>fossil fuel</u> utilization
- Reduce greenhouse gases
- Reduce the need for spinning reserve
- Increase the use of renewables

Objectives and Materials Focus

- Objectives: Develop low cost energy storage materials. Assess
 the effect of intercalation material structure on the stability of
 cathode electrode materials. Examine performance relative to
 structure, particle size and morphology
- Approach: Synthesize novel alternative chemistry intercalation materials at the nanoscale and characterize performance

Structure, Particle Size and Morphology from Experiment

NaFePO₄ Crystalline Structure

Electrochemical Performance from Experiment

NATIONAL ENERGY TECHNOLOGY LABORATOR

Materials Focus

 Intercalation chemistry for low cost, high performance cathode electrode materials:

- Phosphates $(Na_xFe_y(PO_4)_yF_z)$
 - Phase: Olivine, maricite, etc.
 - NaFePO₄ \rightarrow xNa + xe⁻ + xFePO₄ + (1-x) NaFePO₄
 - E = 3.48 V
- Sulfides (Mg_xMo₆S₈)
 - Phase: Chevrel
 - Issues with regenerability
- Layered (Na_xTi₂O₄)
 - Phase: Spinel

Synthesized Materials

Material	No. of Preparations	Preparation Method	Analytical
NaFePO ₄	3	Microwave , thermolysis	XRD, BET, FE-SEM, EDX, TEM
NaFePO₄F	3	Microwave, thermolysis	-
Na ₂ FePO ₄ F	16	Microwave, thermolysis, solid- state	XRD, BET, FE-SEM, EDX, TEM
Na ₃ Fe ₂ (PO ₄) ₂ F ₃	18	Microwave, thermolysis, solid- state	XRD, BET

Nanoscale Synthesis

Thermolysis

NETL Material Synthesis Capability

- Controlled particle shapes and surface properties: nano-particles, nano-wires and nano-belts
- Techniques:
 - Thermolysis, microwave assisted thermoloysis
 - Hydrothermal
 - Sol-gel

Shape Selectivity of Nanoparticles using NETL Developed Synthetic Methods

NATIONAL ENERGY TECHNOLOGY LABORATORY

Intercalation Energy Storage

- Carbon
- Oxygen
- Metal
- Sodium
- **Discharge**
- Charge
- **Anode**

Electrolyte

Reductive Electrolyte **Decomposition Mechanism**

Oxidative electrolyte **Decomposition Mechanism**

Cathode

- **Electrical energy** is stored chemically in the cathode electrode
- Na-ions migrate between cathode and anode during charge/discharge cycles
- Na-ion guests reside in cathode and anode hosts via intercalation mechanisms
- **Secondary architecture** is critical for low cost and high performance

Intercalation Energy Storage

Na Ion Materials

2 nm

Nano-sized sodium iron phosphate materials have shorter electron and ion diffusion path lengths. Shorter diffusion path lengths improve the charge/discharge kinetics

1000 nm

TEM of Synthesized NaFePO₄ Indicates Bundled Nanorods with High Aspect Ratio (1:50)

Nano-sized sodium iron phosphate particles provide an elegant means of studying the mechanism of sodium intercalation in new materials may hold the key to grid-scale energy storage batteries

Intercalation Energy Storage

Na Ion Materials

TEM of Microwave Synthesized NaFePO₄
Nanomaterial

A closer look at the nanobundles indicates that the nanorods are interconnected to form chains with 10 to 20 nm widths

➤ Most as synthesized NaFePO₄ nanorods are crystalline with an amorphous shell as indicated from XRD results

TEM of Microwave Synthesized NaFePO₄
Nanomaterial

Na Ion Materials

NaFePO₄ XRD Crystal Structure [100] Direction

FE-SEM Photomicrograph of Microwave Synthesized NaFePO₄

NaFePO₄ XRD Powder Diffraction

Maricite is a relatively closed framework with no layered or channeled pathways for Na+ intercalation which can result in irreversible redox behavior

Element	Weight %	Atom
		%
С	20.87	34.69
0	31.93	39.84
Na	10.18	8.84
P	11.87	7.65
Fe	25.15	8.99
Total	100.00	100.00

Intensity (a.u.)

EDX Analysis

TEM of NaFePO₄ Showing Nanorod Structure

Na₂ Ion Materials

Na₂FePO₄F Crystal Structure [100] Direction

Solid state synthesis produced multifaceted crystals with micron sized dimension

FE-SEM Photomicrograph of Na₂FePO₄ F

Na

Florine addition produces 2-dimensional channels with a layered structure in the crystalline lattice. 2dimensional channels enhance the Na⁺ intercalation and deintercalation mechanism

Only a 4% decrease in the unit cell volume which limits deterioration

Na₂FePO₄F XRD Powder Diffraction

Na₃ Ion Materials

Na₃Fe₂(PO₄)₂F₃ Crystal Structure [001] Direction

Na₃Fe₂(PO₄)₂F₃ XRD powder diffraction

Florine addition produces 2-dimensional channels without a layered structure in the crystalline lattice. 2-dimensional channels enhance the Na⁺ intercalation and deintercalation mechanism. Higher concentration of Na⁺ per unit cell leads to increased energy density.

Energy Storage Materials Performance *Na and Na₂ Ion Materials*

Na₂FePO₄F and NaFePO₄ Impedance Measurements

- Na₂FePO₄F is more conductive than NaFePO₄
- Cathode conductivity could potentially be improved with F addition and by reducing particle size
- $\sigma_{LiFePO_4} = 10^{-10} \sim 10^{-9} \text{ s/cm}^1$
 - LiFePO₄ has a lower conductivity than NaFePO₄

Mg Ion Materials

Chevrel Phases: Mg_xMo₆S₈

Mo₆S₈ Crystal Structure without Mg Intercalation Mg₂Mo₆S₈ Crystal Structure with Mg Intercalation

NATIONAL ENERGY TECHNOLOGY LABORATORY

3-D Energy Storage Material Architecture

30 μm

the battery to be tailored to the material characteristics

Conclusions

- Sodium iron phosphate was synthesized as cathode electrode energy storage materials using microwave, thermolysis and solid-state synthesis techniques
- As synthesized materials were characterized using TEM, XRD, EDX and BET surface area
- Microwave synthesized NaFePO₄ nanocrystals were shown by TEM to exhibit tubular geometry
- Impedance testing of nano-sized NaFePO₄ and Na₂FePO₄F revealed that NaFePO₄ possesses greater internal resistance
- Sodium iron phosphate represents a potentially low cost, environmentally benign, energy storage material for use on the modern grid

Future Plans

- Cathode electrode materials
 - Continue on series with sodium iron phosphates
 - Na, Na₂ and Na₃
 - Effect of dopants? Nanoscale architecture?
 - Novel intercalation materials
 - Spinel and chevrel phases
 - Na, Mg
- Electrolyte material development
 - Solid-state, solvent (aqueous, organic)
- Anode material development
- 3-D secondary battery architectures
- Computational modeling of structure
- Long term cycle testing

Energy Storage Materials Development

Acknowledgements

TEM Analysis

Dr. Xueyang Song, WVU

Impedance Analysis

Prof. Xingbo Liu, WVU

NETL

- Dr. Charles Taylor
- Dr. Cynthia Powell

Sound Strategies for Meeting Future Fossil Energy Needs

- Fossil energy will meet the majority of the world's energy demand well into the 21st century
- We must continue to pursue technologies that balance energy security, cost, and environmental stewardship
- NETL is working to meet these challenges through publicly funded R&D that pursues high-risk, long-range solutions
- Our facilities and knowledge-base are available for collaborations with domestic and international partners

National Energy Technology Laboratory

- Designated as 15th National Laboratory in 1999
- Only DOE national lab dedicated to fossil energy
 - Fossil fuels provide 85% of U.S. energy supply
- One lab, one management structure, five locations
 - Government owned and operated
 - 3 R&D locations
- Roughly 1,200 employees, both federal and supportcontractor
- Research spans fundamental science to technology demonstrations

Contact Information

NETL website: www.netl.doe.gov