Microstructure, Processing, Performance Relationships for High Temperature Coatings

Thomas M. Lillo

Materials Science & Engineering Idaho National Laboratory

Co-Investigators: Dennis C. Kunerth W. David Swank D.C. Haggard

24nd Annual Conference on Fossil Energy Materials May 25-27, 2009, Pittsburgh, Pennsylvania

Prepared for the U.S. Department of Energy, Office of Fossil Energy, Under DOE Idaho Operations Office, Contract DE-AC07-05ID14517

Goals

•Develop coatings for high temperature service in fossil fuel environments

- Develop coating materials Iron aluminide (Fe₃Al)
- Develop methods for applying coatings HVOF
- Understand factors that affect the reliability of HVOF coatings
- Transfer the techniques and coatings to industry
 Demonstrate reproducibility and reliability of coatings
 - •Field testing industrial partner
 - Demonstrate repair methodologies

Past Results

- Thermal spray parameters can be used to generate highly dense coating with varying levels of residual stress
- Residual stresses in coating arise from three sources
 - CTE mismatch between coating and substrate
 - Quench stresses
 - "Peening" stress
- Corrosion resistance of coating is very close to wrought material
- Coating failure governed by cracking and delamination

High-Velocity Oxy-Fuel (HVOF) thermal spray

- Equivalence ratio (phi)- $\Phi = \frac{Fuel / Oxygen}{(Fuel / Oxygen)_{Stoich}}$
 - Combustion chamber pressure P_C Determined by total mass flow of O_2 and fuel

Current Project Focus

Goal:

Determine factors affecting the mechanical stability of HVOF thermal spray coatings

Tasks:

- Characterize the influence of thermal spray parameters on the mechanical stability of coatings
- Determine the influence of substrate properties on coating durability during thermal cycling
- Determine the influence of thermal spray parameters and substrate properties on coating adhesion

Parameters of Interest

Objective: Identify parameters that result in adherent, high-durability coatings

- Materials parameters
 - CTE difference between coating and substrate
 - Microstructure stability
- High-Velocity Oxy-Fuel (HVOF) thermal spray parameters
 - Chamber pressure particle velocity
 - Fuel/oxygen ratio particle temperature
 - Substrate temperature during spraying standoff distance, traverse speed, preheat/active cooling
 - Coating thickness # of passes

Effects of Substrate Material, Substrate Thickness and Coating Thickness on Thermal Cycling Durability

Substrate Temperature During Spraying

•Maximum temperature attained by the substrate varied from sample to sample.

•In general, substrate thickness and material had little effect on max. temperature attained during spraying.

•Coating thickness did not strongly influence max. temperature.

•Lack of cooling air (Plate 9) resulted in a significantly higher max. temperature.

•Chamber pressure/particle velocity was constant during application of coating

Plate #	Plate Material	Plate Thickness, mm	Number of Layers	Average, microns	Approx. Max Temp., ⁰C
3	Carbon Steel	12.7	3	218	220
9*	Carbon Steel	12.7	5	364	540
4	Carbon Steel	12.7	5	402	280
8	Carbon Steel	19.1	3	249	210
6	Carbon Steel	19.1	3	439	240
7	Grd. 91	19.1	3	223	210
1	Grd. 91	19.1	3	246	190
2	Grd. 91	19.1	5	385	190
5	Grd. 91	19.1	5	416	300

* No cooling air to the substrate

Microstructural Characterization

				Coating Thickness from			Phase Fraction by Image				
				optical image analysis			Analysis				
		Plate									
Plate	Plate	Thickness,	Number of					Average,			
#	Material	mm	Layers	#1	#2	#3	#4	microns	Porosity, %	Melted, %	Solid, %
	Carbon										
3	Steel	12.7	3	224	225	212	209	218	0.2	23.3	76.6
	Carbon										
9	Steel	12.7	5	384	371	359	342	364	0.1	22.3	77.7
	Carbon										
4	Steel	12.7	5	430	397	403	379	402	0.6	20.3	79.1
	Carbon										
8	Steel	19.1	3	228	271	245	252	249	0.1	21.9	78.0
	Carbon										
6	Steel	19.1	3	423	430	448	453	439	0.1	19.8	80.1
7	Grd. 91	19.1	3	235	195	236	224	223	0.9	23.2	75.9
1	Grd. 91	19.1	3	240	241	252	251	246	0.1	18.9	81.0
2	Grd. 91	19.1	5	398	397	368	376	385	0.1	21.5	78.4
5	Grd. 91	19.1	5	387	426	421	430	416	0.2	20.9	78.9

Plate 9

Coating Failure Modes During Thermal Cycling

All were thermal cycled at 700°C for up to 500 cycles - encapsulated with UHP Ar atmosphere

Coating Failure Modes During Thermal Cycling – cont.

Sample P7b-9, thermal cycled at 700°C for up to 500 cycles – encapsulated with UHP Ar atmosphere. Fe₃Al on 19.1 mm thick Grade 91 steel plate, coating thickness ~220 microns.

Idaho National Laboratory

Current Thermal Cycling Results

Sample		Plate	Max. Temp.,	Coating Thickness,		Cycle Temp,	Cycles to
ID	Plate Material	thickness, mm	℃	microns	Pass/Fail	٥C	failure
P8b-6	Carbon Steel	19.1	210	249	*	620	300+
P3b-6	Carbon Steel	12.7	220	218	*	620	300+
P6b-6	Carbon Steel	19.1	240	439	*	620	300+
P4b-6	Carbon Steel	12.7	280	402	F	620	300
P9b-6	Carbon Steel	12.7	540	364	F	620	300
P8b-9	Carbon Steel	19.1	210	249	F	700	300
P3b-9	Carbon Steel	12.7	220	218	Р	700	500+
P6b-9	Carbon Steel	19.1	240	439	F	700	100
P4b-9	Carbon Steel	12.7	280	402	F	700	100
P9b-9	Carbon Steel	12.7	540	364	F	700	100
P1b-6	Grd. 91	19.1	190	246	*	620	300+
P2b-6	Grd. 91	19.1	190	385	*	620	300+
P7b-6	Grd. 91	19.1	210	223	*	620	300+
P5b-6	Grd. 91	19.1	300	416	F	620	100
P1b-9	Grd. 91	19.1	190	246	Р	700	500+
P2b-9	Grd. 91	19.1	190	385	Р	700	500+
P7b-9	Grd. 91	19.1	210	223	F	700	<500
P5b-9	Grd. 91	19.1	300	416	F	700	100

* Samples have survived 300 cycles and are undergoing the remaining 200 cycles.

Current Thermal Cycling Results – cont.

Sample	Diata Mati	Plate	Max. Temp.,	Coating Thickness,	Docc/Eail	Cycle Temp,	Cycles to
ID	Flate Mati	unickness, mm	<u>°С</u>	IIICIOIIS	Fass/Fall	ୖ୰	lallule
P1b-6	Grd. 91	19.1	190	246	*	620	
P2b-6	Grd. 91	19.1	190	385	*	620	
P8b-6	Carbon Steel	19.1	210	249	*	620	
P7b-6	Grd. 91	19.1	210	223	*	620	
P3b-6	Carbon Steel	12.7	220	218	*	620	
P6b-6	Carbon Steel	19.1	240	439	*	620	
P4b-6	Carbon Steel	12.7	280	402	F	620	300
P5b-6	Grd. 91	19.1	300	416	F	620	100
P9b-6	Carbon Steel	12.7	540	364	F	620	300
P1b-9	Grd. 91	19.1	190	246	Р	700	500+
P2b-9	Grd. 91	19.1	190	385	Р	700	500+
P8b-9	Carbon Steel	19.1	210	249	F	700	300
P7b-9	Grd. 91	19.1	210	223	\mathbf{F}^{**}	700	<500
P3b-9	Carbon Steel	12.7	220	218	Р	700	500+
P6b-9	Carbon Steel	19.1	240	439	F	700	100
P4b-9	Carbon Steel	12.7	280	402	F	700	100
P5b-9	Grd. 91	19.1	300	416	F	700	100
P9b-9	Carbon Steel	12.7	540	364	F	700	100

* Samples have survived 300 cycles and are undergoing the remaining 200 cycles.

**Failure by through-thickness cracks

Thermal Cycling – Gleeble Results Effect of Chamber Pressure

		Chamber	Cycle Temerature,		
Sample ID	Substrate Material	Pressure, MPa	°C	Pass/Fail	Comments
SS-50-1	Stainless Steel	0.3	650	Pass	
SS-50-5	Stainless Steel	0.3	700	Pass	Microstructural changes in the substrate
SS-90-4	Stainless Steel	0.6	700	Pass	Microstructural changes in the substrate
600-50-1	Inconel 600	0.3	650	Pass	
600-50-5	Inconel 600	0.3	700	Pass	Optical metallography shows delam
600-90-4	Inconel 600	0.6	700	Pass	No delam in Optical metallography
600-50-4	Inconel 600	0.3	800	Pass	Metallography not complete
600-90-3	Inconel 600	0.6	800	Pass	Metallography not complete
91-50-1	Grade 91 steel	0.3	650	Failed	Okay after 250 cycles
91-90-1	Grade 91 steel	0.6	650	Failed	Cracks initiated at the TC weld - okay after 250 cycles
91-50-5	Grade 91 steel	0.3	700	Failed	Did not survive even 250 cycles
91-90-5	Grade 91 steel	0.6	700	Failed	Cracks initiated at the TC weld - okay after 250 cycles

•Fe₃Al coatings

•Results are for 500 cycles

•All coatings approximately the same thickness, ~250 microns •Particle velocity:

• @0.3 MPa = 570 m/s

•@ 0.6 MPa = 630 m/s

•Particle Temperature:

- •@ $0.3 \text{ MPa} = 1750^{\circ}\text{C}$
- •@ 0.6 MPa = 1600°C

Eddy Current Scans for Grade 91

Eddy Current Scans for Stainless Steel

SS-50-5 after 500 cycles to 700°C (0.3 MPa Chamber Pressure)

Evidence of Delamination

600-50-5: 500 cycles @ 700°C Chamber Pressure = 0.3 MPa

600-90-5: 500 cycles @ 700°C Chamber Pressure = 0.6 MPa

Inconel 600

Potential Causes for Observed Behavior

• Differences between CTE of coating and base metal:

Fe ₃ Al Coating (0.3 MPa)	= 13 x 10 ⁻⁶ /°C
Fe ₃ Al Coating (0.6 MPa)	= 12 x 10 ⁻⁶ /°C
Carbon Steel (1080)	= 12.2 x 10 ⁻⁶ /°C
Stainless Steel (316SS)	= 18.2 x 10 ⁻⁶ /°C
Grade 91 Steel (9Cr-1Mo)	= 13.3 x 10 ⁻⁶ /°C
Inconel 600 (Ni-base)	= 14.0 x 10 ⁻⁶ /°C

- Heat capacity/conductivity of substrate substrate temperature rise.
- Oxidation of base metal during application
- Diffusion between coating and substrate
- Strength of coating
- Substrate strength/deformation of substrate material (?)

 Idaho National Laboratory

Coating Adhesion Via Tensile Testing

5

- Coating strain to fracture measured using acoustic emission monitoring
- 300 µm coatings applied to round tensile specimen substrates
- Two AE sensors attached to each end of substrate
- Coating cracking produces clear AE signals
- Crack initiation appears to be concentrated at ends of the coating.
- Modifications to specimen geometery are currently being made.

Coating

Cracking strain ~0.7% Cracking stress ~477 MP (SS – $\sigma_{YS} \approx 415$ MPa)

Summary & Conclusions

- It appears that substrate temperature as affected by cooling air, substrate thickness and # of coating layers – influences coating durability during cycling.
- Chamber pressure/particle velocity during HVOF coating application influences the durability of the coating during thermal cycling with a higher particle velocity producing a more durable coating.
- Coating failure occurs by either through-thickness cracking or delamination at the coating/substrate interface.
- Coating have been prepared that are capable of withstanding 500 thermal cycles to temperatures up to 800°C.

Summary & Conclusions

- Complete thermal cycling at two additional temperatures on both the coated plates and rods.
- Analysis of the coating/substrate interface of cycled samples.
- Analysis of interface stability samples (650°C for 5000 hrs).
- Apply coatings to temperature controlled substrates.
- Evaluate coating strength as a function of chamber pressure using tensile testing with AE crack detection.

