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Outline/Introduction
FY00-FY09:  Al-rich (aluminide) coating study

+ Fe-Al alloy optimization study
Oxidation-resistant coating background:

Al-rich (aluminide) coatings very promising
Advanced ultra-supercritical steam - up to 760°C
Coal gasification - low PO2, high PS2

In the US, Al-rich coatings not used in boilers
Extensive research by Rapp, ORNL, etc.
Field tests in 80ʼs unsuccessful

ORNL objective - define benefits/address issues
model lifetime (min 40kh), determine max. T

FY10  Effect of oxy-firing on corrosion
mechanisms in coal-fired boilers



Coatings: Last 10 years at ORNL
Fabrication - chemical vapor deposition (CVD)

- not for boilers or commercialization
- make clean, uniform coatings for research
- full control of process, no “black box”

Substrates - representative Fe-base alloys
T91 - Fe-9Cr-1Mo (later T92, T122)
304L - low C Fe-18Cr-8Ni (later 316)

Diffusion - define substrate interaction
exposures at 500°-800°C for 2-10kh

Oxidation - obvious benefit
define failure criteria (critical Al at failure: Cb)

accelerated testing at 700°-800°C
testing: wet air, recently in 17bar steam



Similar attack in steam and wet air (10±1 vol.% H2O)
Define failure: must have environment that attacks substrate

Prior work in lab. air could not define coating lifetime
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Key Points
Normally think that more Al is better

thermal expansion mismatch problem



Intrinsic Aluminide Coating Problem
Substrate-coating thermal expansion mismatch

For coated 304L, 3 layers with 3 different CTE
For coated T91, 3 layers with thick (250µm) coat
BUT, “thin” coating (50µm) no Fe3Al - small ΔCTE
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If CTE mismatch is problem, can
thermal cycling crack coating? YES

Thick CVD coatings, 1h & 100h cycles, 700°C, humid air

Fe-9Cr-1Mo
coating

Cu

200µm

200µm304L
Fe0x

coating

outer
Fe3Al

inner - lower Al

scale 50µm

Coating cracking =
substrate attack

100h cycles stopped
at 20kh: no attack



If CTE mismatch is problem, does
thickness (δ) affect performance? Yes
Thin & thick CVD coatings, 1h cycles, 700°C, humid air
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Key Points
Normally think that more Al is better

thermal expansion mismatch problem
Al loss:  more by interdiffusion than oxidation

Al interdiffusion destroys Fe-Cr strength



Creep Testing of P92 (Fe-9Cr-2W)
Effect of as-deposited coating thickness

Specimen with thin coating has better creep resistance
Effect of coating can be modeled as if coated layer absent

Suggests that thin coatings are preferable
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Key Points
Normally think that more Al is better

thermal expansion mismatch problem
Al loss:  more by interdiffusion than oxidation

Al interdiffusion destroys Fe-Cr strength
less is more:  “thin” ~50µm coatings better



Key Points
Normally think that more Al is better

thermal expansion mismatch problem
Al loss:  more by interdiffusion than oxidation

Al interdiffusion destroys Fe-Cr strength
less is more:  “thin” ~50µm coatings better

T91 lifetime model developed
Based on NASA COSIM model (Nesbitt)
Isothermal diffusion experiment data used
Need failure criteria to predict life



Defining a coating failure criteria
need to determine Cb for coating in steam

gas

coating

substrate

oxide

Al supply: coating thickness and starting Al concentration
Coating thickness loss or Al content drop due to:

(1) oxidation/sulfidation: selective formation of reaction product
(2) diffusion into substrate

At low temperatures 650-700°C expect loss by (1) << loss by (2)
Cb ~20at%Al for sulfidation
How low can Al content drop in steam environment?
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Original hypothesis:  Higher Cr content in coating (~18%Cr)?
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Key Points
Normally think that more Al is better

thermal expansion mismatch problem
Al loss:  interdiffusion more than oxidation
less is more:  “thin” ~50µm coatings better

T91 Lifetime model developed
Based on NASA COSIM model (Nesbitt)
Isothermal diffusion experiment data used
Need failure criteria to predict life

8-10%Cr doesnʼt affect lifetime at 800°C
Cb decreases with increasing temperature
No failures on thin coatings on 304L/316

Model still being developed for 304L
how account for phase boundary effect?



Coatings:  A path forward
- Coupon tests only of interest if taken to failure
- Reality for T91 (all F/M):

boiler application ≤600°C - no Al interdiffusion
Thin coating will minimize mech. problems

- Reality for 304L (347HFG, Super304H, etc.)
no boiler application above 650°C
phase boundary will limit interdiffusion
Will CTE mismatch cause fatigue cracking?

- Fabrication
How to coat 10m tubes? Thin slurry coating?
How to coat welds?  (Coat before PWHT!)

- Demonstration
304/347 tube explosions creates need

Now: 2010 EPRI program with ORNL & Praxair



Milestones
FY09: Coatings

Done - Complete 800°C testing (9-12Cr failures)
Done - Final report on coatings: presentation at

Oct. 09 EFC workshop - 2010 proceedings

Future: EPRI demonstration coating 347H tubes
Tritium permeation barriers

FY10: Oxy-firing corrosion
- Literature review
- Begin testing in CO2, H2O (i.e. no ash)

(piggy-backing on USC: 800°C, 17bar steam)
- Begin testing in fireside corrosion (done)
- Build in-situ rig for creep testing in steam



What is effect of steam on creep?
Little experience with new alloys in steam

In H2O, well-known that H injected into metal: effect?
Better comparison: coating debit vs. corrosion debit

ex-situ (in air) in-situ

under constructionUntested: C617, 740
also 4kh steam, 2kh anneal



Introduction - Oxy-fired Coal Boilers
Several studies published by Alstom (Bordenet)

Ni-base alloys Austenitics
Fe-Cr

(courtesy Alstom)

worker

air
O2

particle
removal

CO2
capture

hole in the
ground

air O2
CO2 15 59%
H2O 10 32%
O2 2.5 1.9%

SO2 0.13 0.46%

flue gas
recirculation

Germany: 30MW oxy-fired pilot plant (Alstom)
U.S. utilities: no oxy-firing without CO2 legislation



Corrosion testing
Determine effect of higher CO2, H2O, SO2...

Get started: establish methodology + safety/health
make specimens, work out experimental issues

gas only, no ash
- H2O only
- CO2 only
- H2O-CO2
(under construction)

Synthetic ash: 30%Fe2O3-30%Al2O3-
30%SiO2-5%Na2SO4-5%K2SO4

Gas: N2-15%CO2-3.5%O2-0.25SO2
Temperature:  600°C
Time:  500h (1 cycle) Porous alumina



Half ash vs. full coverage
Different procedures reported in literature

Ni-base
Austenitics

Fe-Cr

T91
Full ash
5.99mm
(ave. 12)

T91
Half ash
5.94mm

Full ash (9g)Half ash (3.8g)

50µm

near top

bottom



Preliminary results: ΔCO2
Increased CO2 concentration in base gas

Mass change data only - need metal loss
Qualitatively similar to 700°C Bordenet data

(austenitics better than Ni-base)

Ni-base

Austenitics

Fe-(9-12)Cr

T22
500h



Not just commercial alloys
Model alloys: better composition understanding

Cast, hot-rolled to 8mm: cut coupons and rods
Potential coating compositions
Information for alloy development
Future: quaternary additions, etc.

Ni Content (wt.%)
0 25 35 45

15 X
20 X
25 X X X
35 X X X

Alloy 33
622,625

chromizing



Initial model alloy results
Ash tests, 500h 600°C

Mass change data only - need metal loss
35%Cr alloys significantly less pitting than 25%Cr

FeCrNi alloys Fe-Cr alloys



Long-term plan
FY10: Setup
- Literature review
- Begin testing in CO2, H2O (i.e. no ash)
- Begin testing in fireside corrosion (done)
- Build in-situ rig for creep testing in steam

FY11: Complete work on Fe-Cr
FY12:  Austenitics
FY13:  Ni-base alloys



backups



10µm

High-purity well-controlled process
Chemical vapor deposition (CVD) coatings

similar to a well-controlled above-pack coating process
ORNL laboratory scale reactor with 2-4, 2x1cm specimens

austenitic 304L (Fe-18Cr-8Ni)
ferritic-martensitic T91 (Fe-9Cr-1Mo)

flowing H2-AlClx, 100 Torr, 6h, 900°C or 4-6h at 1050°C
Two types:“Thick” coatings ≈40µm Al-rich outer layer, 150µm total

“Thin” ≈5µm Al-rich outer layer, 35µm total thickness
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Case study:  Fe-40Al doping
10+ year argument on RE strengthening

Whittenberger: in NiAl, Zr strengthening gone by 1100K
Only 1000°C compression yield data (Schneibel,Dryepondt)
Fe-Al:  RE/C predicts life better than yield strength

+Mo
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Effect of CCr on Cb
Thin coatings at 800°C in wet air

T91, T92, T122 (10.5%Cr) all failed within 10% of life
Cb at failure was <1.1at% Al
Kvernes (Fe-13Cr-xAl) said more Al required with T!

304L:  bad coating
316SS:  no failure at 4kh!
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Fe-Cr Coating Solution
Eliminate CTE mismatch problem

For coated T91:
Thick CVD: Outer Fe3Al layer

inner coating & substrate are ferritic

Thin CVD: ~18at.%Al peak surface Al (no aluminide)
only α-Fe(Al) phase
NO ΔCTE
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Prediction COSIM COSIM COSIM Heckel Actual
Method dependent indep. FeAl indep. FeCrAl (diffusion test)

Surface (at.%) 19 16 17 19 18%Al

Thickness (µm) 310 438 428 356 320 µm
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Summary

Fe-9Cr 304L
CTE/cracking ⇑ ⇓

Cr content ⇓ ⇑

Phase boundary ⇓ ⇑
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T91 model for thin coatings
COSIM prediction based on 11kh failure
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Model Fe-Al-Cr alloy performance
after 100, 1h cycles at 700°C in humid air
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Standard Oxidation Lifetime Model
Lifetime model developed by Quadakkers, Bennett, et al. for
ODS FeCrAl alloys with 1-3mm cross-sections
Premise:  Calculate time to breakaway (FeOx formation) by
knowing total Al reservoir available and rate of Al consumption
Model inputs:
- initial Al content (Co)
- the critical Al content where Al2O3 will no longer form: (Cb)
- the thickness of the specimen (d) and density (ρ)
- Al consumption rate (e.g. ktn), t is time,

n=0.5 for parabolic, 1 for linear kinetics

(C0-Cb)/100 • d/2 • ρ = k • tn •

How does this apply to a coating?
more complex Al “consumption”:  interdiffusion + oxidation
C0 becomes a function of the coating thickness
What is Cb for a coating?

    (mole Al)    
mole O in Al2O3



700°C Performance of thick coating
Coatings stopped after 10 & 20kh in humid air
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Coating Al profiles on T91:
- all for thick coatings
- variations in starting thickness
Deformation difference:
- ΔCTE difference for 304L

304L substrate
(20kh)

T91 substrate
(20kh)

T91 substrate

250µm
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20kh Coating Characterized
Thick coating on T91 in humid air at 800°C

50µm

commercial T91
(20kh)

20kh specimen:
No macroscopic deformation
Low mass gain

- but outer layer local breach
Porous coating layer

- Al loss due to scale spallation

FeOx
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20kh Coating Characterized
Thick coating on T91 in humid air at 800°C

Fe-9Cr-1Mo
20µm
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Electron probe analysis:
Typical Fe-rich oxide nodules
Local alumina scale pieces
AlN precipitates (0.2at.%N in alloy)
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Future work: austenitic model
Four component system (Fe, Ni, Cr, Al) + two phase

304L:  COSIM model missing diffusion terms
Three phase system (β-(Fe,Ni)Al+ ferrite + substrate)

Observations:  Thinner starting coating than on T91
Slower Al diffusion: inhibited by phase transformation
~4.5at%Al remained in inner layer (+ ~18%Cr) - equilibrium?

0
2

4

6

8

10
12

14

16

18

20

N
or

m
al

iz
ed

 A
l C

on
te

nt
 (a

t.%
)

0 100 200 300 400 500 600
Distance from Surface (µm)

T91 6kh, 800°C

T91 as-coated
(peak 26%)

CVD Thick coat

304L 6kh, 800°C

304L as-coated
(peak 35%)



Prediction COSIM COSIM COSIM Heckel Actual
Method dependent indep. FeAl indep. FeCrAl (diffusion test)

Surface (at.%) 19 16 17 19 18%Al

Thickness (µm) 310 438 428 356 320 µm

Lifetime Predictions:
(sulfidation)
assuming 20% 6.8 kh 5.0 kh 5.6 kh 7.5 kh ?
(wet air)
assuming 3.5% 639 kh 219 kh 248 kh 592 kh ??
assuming 8% 187 kh 57 66 104 kh ?
(conservative)

Lifetime predictions at 700°C
Calculations for ~250µm thick coatings on T91

Sulfidation - insufficient life at 700°C, need to drop to ~625°C
Wet air - high probability of thick coating making 100kh lifetime

Model details in Zhang et al., Mater. Corr. 58 (2007)



Prediction COSIM COSIM COSIM Heckel Actual
Method dependent indep. FeAl indep. FeCrAl (diffusion test)

Surface (at.%) 19 16 17 19 18%Al

Thickness (µm) 310 438 428 356 320 µm

Lifetime Predictions:
(sulfidation)
assuming 20% 6.8 kh 5.0 kh 5.6 kh 7.5 kh ?
(wet air)
assuming 3.5% 639 kh 219 kh 248 kh 592 kh ??

Lifetime predictions at 700°C
Calculations for ~250µm thick coatings on T91

Sulfidation - insufficient life at 700°C, need to drop to ~625°C
Wet air - high probability of thick coating making 100kh lifetime

- thick coatings will never fail on 1.7mm substrate!


