High Temperature Oxidation Issues in Fossil Boilers

B. A. Pint, M. A. Bestor, S. Dryepondt Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

> Y. Zhang Tennessee Technological University Cookeville, TN 38505

Research sponsored by the U.S. Dept. of Energy Fossil Energy Advanced Research Materials Program

Acknowledgments

ORNL

- A. Haynes, K. Cooley CVD coating fabrication
- K. Unocic characterization
- G. Garner, J. Moser, T. Brummett, M. Stephens, M. Howell oxidation experiments
- H. Longmire, K. Thomas metallography
- T. Brummett SEM
- L. Walker EPMA

Tennessee Tech.

B. Bates - SEM

Research sponsored by the U. S. Department of Energy, Fossil Energy Advanced Materials Research Program

Outline/Introduction

FY00-FY09: Al-rich (aluminide) coating study + Fe-Al alloy optimization study Oxidation-resistant coating background: Al-rich (aluminide) coatings very promising Advanced ultra-supercritical steam - up to 760°C Coal gasification - low P_{O_2} , high P_{S_2} In the US, Al-rich coatings not used in boilers Extensive research by Rapp, ORNL, etc. Field tests in 80's unsuccessful **ORNL** objective - define benefits/address issues model lifetime (min 40kh), determine max. T

FY10 Effect of oxy-firing on corrosion mechanisms in coal-fired boilers

Coatings: Last 10 years at ORNL Fabrication - chemical vapor deposition (CVD)

- not for boilers or commercialization
- make clean, uniform coatings for research
- full control of process, no "black box"

Substrates - representative Fe-base alloys

T91 - Fe-9Cr-1Mo (later T92, T122)

304L - Iow C Fe-18Cr-8Ni (later 316)

Diffusion - define substrate interaction

exposures at 500°-800°C for 2-10kh

Oxidation - obvious benefit

define failure criteria (critical AI at failure: C_b) accelerated testing at 700°-800°C testing: wet air, recently in 17bar steam

Fe-9Cr in Steam vs. Humid Air comparison of mass gain and reaction products 650°C, 1202°F

Similar attack in steam and wet air (10 ± 1 vol.% H₂O)

Define failure: must have environment that attacks substrate Prior work in lab. air could not define coating lifetime

Key Points

Normally think that more Al is better thermal expansion mismatch problem

Intrinsic Aluminide Coating Problem Substrate-coating thermal expansion mismatch Ferritic Austenitic

For coated 304L, 3 layers with 3 different CTE For coated T91, 3 layers with thick (250 μ m) coat BUT, "thin" coating (50 μ m) no Fe₃AI - small Δ CTE

If CTE mismatch is problem, can thermal cycling crack coating? YES Thick CVD coatings, 1h & 100h cycles, 700°C, humid air

If CTE mismatch is problem, does thickness (δ) affect performance? Yes

Thin & thick CVD coatings, 1h cycles, 700°C, humid air

Key Points

Normally think that more AI is better thermal expansion mismatch problem AI loss: more by interdiffusion than oxidation AI interdiffusion destroys Fe-Cr strength

Creep Testing of P92 (Fe-9Cr-2W) Effect of as-deposited coating thickness

Specimen with thin coating has better creep resistance Effect of coating can be modeled as if coated layer absent Suggests that thin coatings are preferable Dryepondt et al., Surf. Coat. Tech. (2006)

Key Points

Normally think that more Al is better

thermal expansion mismatch problem Al loss: more by interdiffusion than oxidation Al interdiffusion destroys Fe-Cr strength less is more: "thin" ~50µm coatings better

Key Points

Normally think that more Al is better thermal expansion mismatch problem Al loss: more by interdiffusion than oxidation Al interdiffusion destroys Fe-Cr strength less is more: "thin" $\sim 50\mu$ m coatings better T91 lifetime model developed Based on NASA COSIM model (Nesbitt) Isothermal diffusion experiment data used Need failure criteria to predict life

Al supply: coating thickness and starting Al concentration Coating thickness loss or Al content drop due to:

- (1) oxidation/sulfidation: selective formation of reaction product
- (2) diffusion into substrate

At low temperatures 650-700°C expect loss by (1) << loss by (2)

 $C_b \sim 20$ at%AI for sulfidation

How low can AI content drop in steam environment?

Effect of temperature on C_b ~40µm coatings on Fe-Cr at 650°-800°C in H₂O

Six failures of thin coatings, one higher AI activity coating Agüero: 650°C slurry coating failed at ~60kh in steam If temperature relationship is understood, this data set forms the basis for a comprehensive lifetime model

No austenitic failures! Thin coatings at 700° and 800°C in wet air

- 700°C: thin coating on 304L past 24kh >2X coating life on T91
- 800°C: thin coating on 316SS past 6kh almost 3X coating life on T91, T92, T122

Original hypothesis: Higher Cr content in coating (~18%Cr)?

800°C interdiffusion difference 250µm coatings stopped 6kh without failure

Austenite-ferrite phase boundary inhibits AI interdiffusion

Key Points

Normally think that more AI is better thermal expansion mismatch problem AI loss: interdiffusion more than oxidation less is more: "thin" ~50µm coatings better

T91 Lifetime model developed Based on NASA COSIM model (Nesbitt) Isothermal diffusion experiment data used Need failure criteria to predict life 8-10%Cr doesn't affect lifetime at 800°C C_b decreases with increasing temperature No failures on thin coatings on 304L/316 Model still being developed for 304L how account for phase boundary effect?

Coatings: A path forward

- Coupon tests only of interest if taken to failure
- Reality for T91 (all F/M): boiler application ≤600°C - no Al interdiffusion Thin coating will minimize mech. problems
- Reality for 304L (347HFG, Super304H, etc.) no boiler application above 650°C phase boundary will limit interdiffusion Will CTE mismatch cause fatigue cracking?
- Fabrication
 - How to coat 10m tubes? Thin slurry coating? How to coat welds? (Coat before PWHT!)
- Demonstration

304/347 tube explosions creates need

Now: 2010 EPRI program with ORNL & Praxair

Milestones FY09: Coatings

 Done - Complete 800°C testing (9-12Cr failures)
 Done - Final report on coatings: presentation at Oct. 09 EFC workshop - 2010 proceedings

Future: EPRI demonstration coating 347H tubes Tritium permeation barriers

FY10: Oxy-firing corrosion

- Literature review
- Begin testing in CO₂, H₂O (i.e. no ash)
 (piggy-backing on USC: 800°C, 17bar steam)
- Begin testing in fireside corrosion (done)
- Build in-situ rig for creep testing in steam

Untested: C617, 740 also 4kh steam, 2kh anneal

under construction

In H₂O, well-known that H injected into metal: effect? Better comparison: coating debit vs. corrosion debit

Introduction - Oxy-fired Coal Boilers

Several studies published by Alstom (Bordenet)

Germany: 30MW oxy-fired pilot plant (Alstom) U.S. utilities: no oxy-firing without CO₂ legislation

Corrosion testing Determine effect of higher CO₂, H₂O, SO₂...

Synthetic ash: 30%Fe₂O₃-30%Al₂O₃-30%SiO₂-5%Na₂SO₄-5%K₂SO₄ Gas: N₂-15%CO₂-3.5%O₂-0.25SO₂ Temperature: 600°C Time: 500h (1 cycle)

Porous alumina

Get started: establish methodology + safety/health make specimens, work out experimental issues

Half ash vs. full coverage Different procedures reported in literature

Preliminary results: ΔCO_2 Increased CO₂ concentration in base gas

Mass change data only - need metal loss Qualitatively similar to 700°C Bordenet data (austenitics better than Ni-base)

Not just commercial alloys Model alloys: better composition understanding

Cast, hot-rolled to 8mm: cut coupons and rods Potential coating compositions Information for alloy development Future: quaternary additions, etc.

Initial model alloy results Ash tests, 500h 600°C FeCrNi alloys Fe-Cr alloys

6 600°C 600°C, 15%CO₂ -0- 15% 40 500 h -�- 25% Specimen Mass Change (mg/cm²) 5-Specimen Mass Change (mg/cm²) 25wt.%Cr 35% 30 4 T91 Save12 3-35 wt.%Cr 20 2-10. Model Fe-Cr 1 0 -3. 0-25 40 45 30 35 20 10 15 0 5 Ni content (wt.%) Cr content (wt.%)

Mass change data only - need metal loss 35%Cr alloys significantly less pitting than 25%Cr

Long-term plan

FY10: Setup

- Literature review
- Begin testing in CO₂, H₂O (i.e. no ash)
- Begin testing in fireside corrosion (done)
- Build in-situ rig for creep testing in steam

FY11: Complete work on Fe-Cr

- **FY12: Austenitics**
- FY13: Ni-base alloys

backups

High-purity well-controlled process

Chemical vapor deposition (CVD) coatings

- similar to a well-controlled above-pack coating process
- ORNL laboratory scale reactor with 2-4, 2x1 cm specimens

austenitic 304L (Fe-18Cr-8Ni)

ferritic-martensitic T91 (Fe-9Cr-1Mo)

flowing H₂-AlCl_x, 100 Torr, 6h, 900°C or 4-6h at 1050°C

Two types: "Thick" coatings $\approx 40\mu$ m Al-rich outer layer, 150 μ m total "Thin" $\approx 5\mu$ m Al-rich outer layer, 35 μ m total thickness

Less thin coatings Modify CVD process by adding Al-Cr powder

Distance from Surface (μm)

Improved processing for H permeation barriers

Final work: Fe-Al alloys + Y,Hf Academic exercise to see comparison

Fe-17Al+Hf: Al gradients reduce life Fe-18Al+Y: broccoli failure (shorter life than FeCrAlY) Fe-19Al+Y/Hf: Optimized dopant, highest Fe(Al) Fe-28Al-2Cr+Y/Hf: Fe₃Al (high CTE) 5kh/yr: taking a long time to complete!

Case study: Fe-40Al doping 10+ year argument on RE strengthening ORNL base alloy: Fe-40Al-0.2Mo-0.05Zr-0.4C Zr/C=0.12

Whittenberger: in NiAl, Zr strengthening gone by 1100K Only 1000°C compression yield data (Schneibel, Dryepondt) Fe-AI: RE/C predicts life better than yield strength

Effect of C_{Cr} on C_b Thin coatings at 800°C in wet air

T91, T92, T122 (10.5%Cr) all failed within 10% of life

C_b at failure was <1.1 at% Al

Kvernes (Fe-13Cr-xAl) said more Al required with T! 304L: bad coating 316SS: no failure at 4kh!

Fe-Cr Coating Solution Eliminate CTE mismatch problem

For coated T91: Thick CVD: Outer Fe₃Al layer inner coating & substrate are ferritic

Thin CVD: ~18at.%Al peak surface Al (no aluminide) only α -Fe(Al) phase NO Δ CTE

Coating Performance: 700°C Accelerate failure by increased interdiffusion

Thick coatings had a longer lifetime on T91 and 304L Breakaway oxidation for thin coating on T91 at ~10,500h
Failed Coating Characterized Thin coating after 11,000h in humid air at 700°C

Diffusion predictions at 700°C

Using 10kh observations for \sim 250 μ m coatings on T91

Prediction Method	COSIM dependent	COSIM indep. FeAl	COSIM indep. FeCrAl	Heckel	Actual (diffusion test)
Surface (at.	%) 19	16	17	19	18%AI
Thickness (µm) 310	438	428	356	320 <i>µ</i> m

COSIM - NASA (Nesbitt) developed model - missing key D_{xy} terms Heckel - simple parabolic rate constant from 2,000h data

Thin vs. Thick Coatings: Sulfidation

Model Fe-Al alloys at 800°C in H₂-H₂O-H₂S-Ar

800°C, 1472°F

For comparison to coatings, cast Fe-15at%(8wt%)AI&Fe-20%(11wt%)AI Fe-15at%AI showed accelerated mass gain in test similar to thin coatings Low mass gain for Fe-20%AI Previous work by DeVan and Tortorelli found 18at%AI needed in Fe-AI

Higher AI content ("thick") needed for sulfidation resistance

Summary

Fe-9Cr 304L **CTE**/cracking Cr content Phase boundary

Coating Performance: 650°C CVD or pack cementation coatings, 100h cycles

Failed Coating at 800°C Thin coating on P92 after 2,800h in humid air

T91 model for thin coatings COSIM prediction based on 11kh failure

Need to refine AI consumption term to match profile

Combined Creep/Corrosion Testing P92: alternating wet air & creep in dry air 650°C

650°C, 1202°F 100MPa, 14.5ksi

Ideally wanted to compare:

- loss of strength (coating)
 40µm CVD, 60µm Pack
- uncoated loss (oxidation)

Order of testing effect:

creep test first - low rate wet air test first higher creep rate

Observations: uncoated specimen did not lose strength >7% deformation did not breach coating (true for Fe₂Al₅?) Creep testing in steam (or wet air) needed

Model Fe-Al-Cr alloy performance after 100, 1h cycles at 700°C in humid air

Model alloys indicate with binary Fe-Al, need 20 at.%Al to avoid FeO_x formation

However, when Cr present, critical AI content drops with 10%Cr (≈Fe-9Cr-1Mo), protective with 13%AI with 20%Cr (≈304L) protective with 10%AI (FeCrAI)

Standard Oxidation Lifetime Model

Lifetime model developed by Quadakkers, Bennett, et al. for ODS FeCrAl <u>alloys</u> with 1-3mm cross-sections

Premise: Calculate time to breakaway (FeO_x formation) by knowing total AI reservoir available and rate of AI consumption Model inputs:

- initial Al content (C_o)
- the critical AI content where AI₂O₃ will no longer form: (C_b)
- the thickness of the specimen (d) and density (ρ)
- Al consumption rate (e.g. ktⁿ), t is time,
 - n=0.5 for parabolic, 1 for linear kinetics

$(C_0 - C_b)/100 \cdot d/2 \cdot \rho = k \cdot t^n \cdot \frac{(\text{mole Al})}{\text{mole O in Al}_2O_3}$

How does this apply to a coating?

more complex AI "consumption": interdiffusion + oxidation C_0 becomes a function of the coating thickness What is C_b for a coating?

700°C Performance of thick coating Coatings stopped after 10 & 20kh in humid air

20kh Coating Characterized Thick coating on T91 in humid air at 800°C

20kh specimen: No macroscopic deformation Low mass gain

- but outer layer local breach Porous coating layer

- Al loss due to scale spallation

20kh Coating Characterized Thick coating on T91 in humid air at 800°C

Future work: austenitic model

Four component system (Fe, Ni, Cr, Al) + two phase

304L: COSIM model missing diffusion terms Three phase system (β-(Fe,Ni)AI+ ferrite + substrate)
Observations: Thinner starting coating than on T91 Slower AI diffusion: inhibited by phase transformation ~4.5at%AI remained in inner layer (+ ~18%Cr) - equilibrium?

Lifetime predictions at 700°C

Calculations for ~250µm thick coatings on T91

Prediction Method	COSIM dependent	COSIM indep. FeAl i	COSIM ndep. FeCrAl	Heckel	Actual (diffusion test)
Surface (at.	%) 19	16	17	19	18%Al
Thickness (µ	<i>u</i> m) 310	438	428	356	320 <i>µ</i> m
Lifetime Pre (sulfidation)	dictions:				
assuming 20 (wet air)	0% 6.8 kh	5.0 kh	5.6 kh	7.5 kh	?
assuming 3.	5% 639 kh	219 kh	248 kh	592 kh	??
assuming 8° (conservativ		57	66	104 kh	?

Sulfidation - insufficient life at 700°C, need to drop to ~625°C Wet air - high probability of thick coating making 100kh lifetime Model details in Zhang et al., Mater. Corr. 58 (2007)

Lifetime predictions at 700°C

Calculations for ~250µm thick coatings on T91

Prediction Method	COSIM dependent	COSIM indep. FeAl	COSIM indep. FeCrAl	Heckel	Actual (diffusion test)
Surface (at.	%) 19	16	17	19	18%Al
Thickness (µm) 310	438	428	356	320 <i>µ</i> m
Lifetime Pre (sulfidation)					
assuming 2 (wet air)	0% 6.8 kh	5.0 kh	5.6 kh	7.5 kh	?
assuming 3	.5% 639 kh	219 kh	248 kh	592 kh	??

Sulfidation - insufficient life at 700°C, need to drop to ~625°C Wet air - high probability of thick coating making 100kh lifetime - thick coatings will never fail on 1.7 mm substrate!