

Computational Modeling and Assessment of Nanocoatings for USC Boilers

Presented by:

D. Gandy (EPRI), Davgandy@epri.com

S. Cheruvu (SWRI), Scheruvu@swri.org

R. Wei (SWRI), Rwei@swri.org

J. Shingledecker (EPRI), <u>Jshingledecker@epri.com</u>

DOE Sponsored Program: DE-FC26-07NT43096
Patricia Rawls, DOE Project Mgr.

Outline

- Project Objectives
- Background
- Modeling of Advanced MCrAl Nanocoatings
- Processing Advanced Nanocoatings
 - Quality Issues
 - Al Consumption
- Fireside Corrosion Testing
- Conclusions

DOE Nanocoatings Project Objectives

- Develop/demonstrate nano-structured coatings using computational modeling methods to improve corrosion/ erosion performance of tubing in USC boiler applications.
- Improve the reliability/availability of USC fossil-fired boilers and oxy-fuel advanced combustion systems by developing advanced nano-stuctured coatings:
 - optimized utilizing science-based computational methodologies
 - 2. validated via experimental verification and testing in simulated boiler environments

Goals Align with DOE Objectives

- Advanced materials for NZE power plants.
- Computational methods

Background

- Typical boiler wastage rates:
 - Subcritical 20 mils (0.5mm)/year
 - Supercritical 40-100 mils (1.0-2.5mm)/year
- Corrosion rates tend to increase with increasing temperatures.
- Higher operating metal temperature of supercritical boiler tubes tend to increase corrosion rates by 2-5X

Equivalent Availability Loss from Boiler Tube Failures in US is 2.5-3.0%

Background--Corrosion Resistance of Nanocoatings

--Finer grain size lowers minimum Cr requirement!!

For corrosion resistance formation of chromia scale is crucial.
--Typically 20% Cr is required for protective scale formation

- Ni-10% conventional coating was severely corroded (no continuous chromia scale!)
- Continuous chromia scale was formed under the Ni-rich oxide in Ni-20% Cr coating - showed minor internal sulfidation
- Nanostructured Ni-11% coating showed continuous chromia scale (no sulfidation)

Ni-10% Cr Conventional

Ni-20% Cr Conventional

Ni-11% Cr Nanostructure

Project Tasks & Milestones

- Task 1: Computational Modeling of MCrAl Systems (06/2008)
- Task 2: Establishment of Baseline Coating Data (06/2008)
- Task 3: Processing Advanced MCrAl Nanocoatings (80%)
- Task 4: Fire-Side Corrosion Testing (03/2009)
- Task 5: Computational Modeling & Validation (40%)
- Task 6: Mockup Demonstration (delayed)
- Task 7: Project Management & Reporting (80%)
- Completion by end of 2010

Task 1: Computational Modeling of MCrAl Systems

--completed

Objective: Select potential MCrAl nanostructured coating compositions using computational modeling

Task 1- Computational Modeling Of MCrAl --Composition Selection

Model Recommendation

- Coating composition: Fe-30/40Ni-25Cr-10Al
 - A patent disclosure was filed on the composition

Four Candidate Nanocoating Compositions Selected For Evaluation

Iron base coatings

- 310 + AI (Fe-25Cr-20Ni-10AI)
- Haynes 120+Al (Fe-37Ni-25Cr-10Al)

Nickel base coating

Haynes 160+AI (Ni-29Co-28Cr-3Si-10AI)

Cobalt base coating

Haynes 188+AI (Co-22Ni-22Cr-14W-10AI)

- Computations based on FeNiCrAlx
- Developed phase diagrams; then grain growth, sintering, diffusion models, and interface toughness

Task 2: Establishment of Baseline Coating Data

--completed

Objective: Evaluate conventional coatings and available vendor nanocoatings to assess properties

Task 2. Baseline Coating Oxidation Characterization -- Fe-18Cr-8Ni-xAl and Ni-20Cr-xAl (not shown)

After 990 cycles @750°C

- 1). The protective oxide layer
- 0% Al coating Cr₂O₃
- 4 and 10%Al coatings Al₂O₃
- 2). 4% Al coating was oxidized slightly
- 3). 10% Al coating free from internal oxidation
- 4). Inward diffusion of Al led to formation of interdiffusion zone with FeAl particles
- 5). All content in the coating dropped from 10% to 3.7% after 990Cycles

Task 3: Processing of Advanced NanoCoatings

--in progress

Objective: Apply advanced nanocoatings on USC substrate alloys and evaluate properties

Task 3 - Processing of Advanced NanoCoatings

Four Plasma-Enhanced Magnetron Sputtering Units Evaluated

- PEMS—2 Magnetrons
- High Power Impulse Magnetron Sputtering
- Large PEMS Chamber (1M³)–4 Magnetrons
- Pulsed DC Powered PEMS (Colorado School of Mines)
- Employed 4 Nanocoatings defined in Task 2 for Processing Characterization
 - 2 Iron-based, 1 nickel-based, and 1 cobalt-based
 - Applied on 304 SS, P91 and Haynes 230 substrates

Task 3 - Processing of Advanced NanoCoatings 1. PEMS--2 Magnetrons

- Process optimization study conducted to improve the consistency of the coating
 - power applied to targets and bias voltage were varied
- Several trial nanocoatings: 304+10Al, 310+10Al and Ni-20-10Al deposited
- Coated samples were destructively examined

Task 3 - Processing of Advanced NanoCoatings -- Metallographic Examination

2000X

Columnar Grains

Task 3 - Processing of Advanced NanoCoatings -- Coating Adhesion Results

- DE-1 and DE-3 exhibited good toughness
- Showed no coating delamination

Task 3 - Processing of Advanced NanoCoatings -- Coatings Microstructures

Task 3 - Processing of Advanced NanoCoatings -- Coating Cracking and Major Concerns

Major Concerns To Address:

- Coating Quality Issues
- Aluminum Consumption

Task 3 - Processing of NanoCoatings -- Process Optimization - Quality Issues

- Several nanocoating trials:
 - Fine-tuned DE-1 and DE-3 parameters & process conditions
 - Increased pre-coating sputtering (cleaning) time
 - Stress relieving the samples
- Visual examination showed a few crack-free samples.
 - These samples were sent for corrosion tests
- Metallographic examination revealed coating defects kernels, cracks etc.

Task 3 - Processing of NanoCoatings2. High Power Impulse Magnetron Sputtering

- High Power Impulse Magnetron Sputtering (HIPIMS) recently used to produce dense coatings
- Several coating trails were conducted to produce dense, crack free coatings
- After optimizing the process variables, H120-10Al, H160-10Al, and H188-10Al coatings were applied
 - V, I, target power (variables)
 - Employed AIN and TiN/AIN diffusion barrier layers
 - The coatings were dense and crack-free
 - Exhibited poor adhesion unfortunately

Task 3 - Processing of NanoCoatings --HIPIMS Process Optimization-Microstructure

Coatings are dense and exhibited no cracks

Surface Morphology

Cross Section

Task 3 - Processing of NanoCoatings --HIPIMS Process Optimization- Coating Adhesion

Poor adhesion & brittle

H120+10Al on AIN

H160+10Al on AIN

H188+10Al on AlN

H120+10Al on TiN/AlN

H160+10AI on TiN/AIN

H188+10Al on TiN/AlN

Task 3 - Processing of NanoCoatings 3. Large PEMS w/ 4 Magnetrons

1 m3 Cube with Four Magnetrons

Task 3 - Processing of NanoCoatings 3. Large PEMS w/ 4 Magnetrons

- Conducted 20+ Coating Trials
- Varied Process Variables for 5 target materials (304, 310, Ni-20Cr, H120 and H160)
 - Sputter cleaning time
 - Magnetron Power, bias and discharge currents
 - Single or multi-layer
 MCrAl/Al Coatings
- Produced dense coatings with fine, discontinuous lamellar structure
- Selected the best process parameters

MCrA

Coating Development Using Large PEMS -- Coating Quality

Still coatings exhibited kernels or cauliflowers and fine cracks

Task 3 - Processing of NanoCoatings 4. Pulsed DC Magnetron Sputtering

- Contacted Colorado School of Mines for coating deposition using Pulsed DC power supply
- Deposited 6-8 µm thick H160+Al coating on 304SS using Pulsed DC with 1kw and 1.5kw power
- Deposited ~30 µm thick H160+Al coating on 304SS and Haynes 230
- Coated samples were destructively examined

Pulsed DC Magnetron Sputtering

Thick Coatings

Coating Quality Improvement Plans—continuing

- Thick coating deposition with sputter cleaning at predetermined intervals
- Deposition of multilayer MCrAl/Al coating

- No Cracks
- Still a few cauliflower defects

Task 3 - Processing of NanoCoatings

-- Reducing AI Consumption

- Diffusion barrier interlayer coatings considered
 - AIN, TiN, and TiSiCN
 - TiN/AIN and TiSiCN/AIN
- After application of interlayer, nanocoatings were applied and cyclic oxidation testing conducted:
 - Ni-20Cr-10Al-coated Haynes samples
 - 2100 thermal cycles
 - Fe-18Cr-8Ni-10Al-coated 304SS samples
 - 1051 thermal cycles

Task 3 - Processing of NanoCoatings -- TiN Interlayer Barrier Coating

Fe-18Cr-8Ni-10Al coating over TiN Coated 304SS after 1051 cycles

- TiN interlayer is intact
- No inward diffusion of Al into 304SS
- Interlayer is very effective

Al remained at approx. same range >>10% to 9.8 wt%

Comparison Oxidation Resistance of Nanocoating Ni-20Cr-10Al and Plasma-Sprayed NiCoCrAIY & PWA 286

Oxide scale on nanocoating showed almost no evidence of spallation

Comparison Coating Degradation of Nanocoating Ni-20Cr-10Al and Plasma-Sprayed PWA 286

1500 cycles at 1010°C

Ni-20Cr-10Al nanocoating degradation-Ductile interface Al-rich precipitate

Al rich interface precipitate

- Nanocoating exhibited better oxidation Resistance than MCrAlY and PWA 286 at 1010°C
- Oxidation is not a concern for these coatings at USC boiler operating temperatures

A patent disclosure was filed

Task 4: Fireside Corrosion Testing

--completed original scope

Objective: Conduct accelerated fireside corrosion tests

Task 4 - Corrosion Testing --Testing Conditions

Waterwall Testing

- 850°F (454°C), 975°F (524°C), and 1100°F (593°C)
- 40 percent FeS and 0.2 percent chlorides (same as USC program)

Superheater/Reheater Testing

- 1100°F (593°C), 1300°F (704°C), and 1500°F (816°C).
- 5 percent alkali sulfates (same as USC program)
- simulate Eastern bituminous coal compositions.
- Perform 1000hr tests (at 100hr intervals).

Waterwall Conditions -- Results

Commercial Nanocoatings

- Relatively porous; provided little protection
- Significant penetration of oxide & sulfide species
- Interconnected network of cracks allowed for penetration

DOE Nanocoatings

- Cracking/spallation generally noted
- Generally resisted "bulk" coating corrosion (some level of protection)
- Scattered penetration of oxide and sulfide species noted @ columnar grain boundaries and defect sites

Waterwall - 1000hr, 975°F

SH/RH Conditions --Results

Commercial Nanocoatings

- Displayed very poor resistance to corrosion
- No evidence of coating apparent following exposure

DOE Nanocoatings

- Complete consumption of the coating and subsequent wastage
 - Degradation generally increased with test temperature
- Some nanocoatings were unstable at high temperatures
 - Interdiffusion between coating and substrate

SH/RH - 1000hr, 1300°F

Conclusions To Date (1)

- For long-term term durability, nanocoatings should contain ~10%Al.
 - A continuous, Al-rich protective oxide scale can be achieved with this level of aluminum.
- Four (4) nanocoatings selected using computational thermodynamics, other models.
- Good cyclic oxidation performance exhibited for baseline nanocoatings (Fe-18Cr-8Ni-xAl, Ni-20Cr-xAl)
- Poor fire-side corrosion observed
 - Due to penetration of oxides and sulfides & cracking
- Nanocoatings did provide some protection for WW applications, but cracking ultimately resulted in failure.

Conclusions To Date (2)

Major Concerns Addressed

- 1. Coating Quality Issues (under investigation)
 - Cauliflowers (kernels) still evident
 - Cracking issues appear to be solved

- A TiN diffusion barrier layer slows AI consumption rate dramatically.
- Oxidation and Spallation are <u>not</u> issues (compared to plasma-sprayed PWA286 & NiCoCrAlY)

Together...Shaping the Future of Electricity

extras

Task 2. Baseline Coating Oxidation Characterization -- Ni-20Cr-xAl

After 2070 cycles at 750°C

- Protective external oxide scale is dense, free from cracks
- Resistant to spallation and coating is free from internal oxidation
- Continuous mass gain is due to outward growth of the scale
- Al consumption rate is high
- Established need for at least 7% Al for long-term durability