SECA Program Review

Presented at the 10th Annual SECA Workshop Pittsburgh, PA July 15, 2009

Shailesh D. Vora Siemens Energy Fossil Power Generation Stationary Fuel Cells

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

E F NT SFC

Significant Results

- Demonstrated significantly higher power density and higher power per cell relative to cylindrical cells through materials and cell design improvements
- Demonstrated voltage stability of next generation cells Delta8
- Completed Phase 1 stack test
- Met all Phase 1 milestones
- Developed lower cost and scalable processes for cell manufacturing
- Developed materials and processes to further increase cell power by 50%
- Increased Delta8 cell length to 100 cm from 75 cm – new cell active area 2570 cm²
- Completed stack design for Phase II stack test
- Initiated assembly of Phase II stack

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 2	July 2009	10 th Annual SECA Workshop
---------	-----------	---------------------------------------

Siemens Tubular Geometry Seal-Less Solid Oxide Fuel Cell

SIEMENS

Siemens Solid Oxide Fuel Cell Materials and Processing

SIEMENS

<u>Component</u>
Air Electrode
Electrolyte
Interconnection
Fuel Electrode

Slide 4

<u>Material</u> Doped LaMnO₃ ZrO₂(Sc₂O₃) Doped LaCrO₃ Ni-ZrO₂ (Y₂O₃) Present Fabrication Process Extrusion-Sintered Atmospheric Plasma Spraying Atmospheric Plasma Spraying Atmospheric Plasma Spraying

Base-line Cell Performance

Single Cell Performance

- DC Power: 110 W/cell @ 0.70 V
- Fuel: Hydrogen
- Temperature: 1000°C
- Fuel Utilization: 80%

In-System Performance

- Net AC Power: 100 W/cell
- Fuel: Reformed natural gas
- Temperature: 940°C average
- Net electrical efficiency: 46% (atmospheric pressure)

Copyright ${f {f C}}$ Siemens Energy Inc. 2009. All Rights Reserved

Slide 5

July 2009

10th Annual SECA Workshop

Cell Voltage Stability

~ 0.1% per 1000 hours voltage degradation

opyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 6

July 2009

10th Annual SECA Workshop

SIEMENS Transition from Tubular to High Power Density (HPD) Cell

Slide 7	July 2009	10 th Annual SECA Workshop	

First Generation HPD Cells

Active Length: 75 cm Active area: ~900 cm²

Developed HPD5 (five channels) and demonstrated benefits relative to tubular cells

Slide 8	3
---------	---

10th Annual SECA Workshop

E F NT SFC

HPD Voltage Stability

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

10th Annual SECA Workshop

Accomplishments and Next Steps

- Demonstrated thermal cyclic stability can withstand multiple thermal cycles
- Demonstrated voltage stability voltage decline of ~ 0.1% /1000 h
- Cost reduction measures in progress
 - Increase cell power density
 - Lower parts count
 - Reduce assembly cost
 - Simplify balance-of-plant

Copyright ${f {f C}}$ Siemens Energy Inc. 2009. All Rights Reserved

Next Generation Cell Concept – Delta8...

- Closed end maintains seal-less design
- Shorter current path reduction in ohmic resistance
- Increase cell power density
- Increase volumetric power density of stack
- Increase cell active area (higher power per cell)

leading to cost reduction in the cell area				
Slide 11	July 2009	Copyright © Siemens Energy Inc. 10 th Annual SECA Workshop	2009. All Rights Reserved E F NT SFC	

Delta8 Cell Performance – Voltage vs. Current Density

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 12

10th Annual SECA Workshop

Cell Performance Comparison

... cell power increased by ~ 5X

Slide 12	July 2000	10th Appuel SECA Workshop	
Slide 15	July 2009	TO ATTITUAL SECA WORKSHOP	E F INT SFC

Delta8 Cell Voltage Stability (2-cell test)

Excellent voltage stability

copyright ${f {f C}}$ Siemens Energy Inc. 2009. All Rights Reserved

Slide 14

July 2009

10th Annual SECA Workshop

Cell and Bundle Comparison

Phase I Stack Test

- 24 Delta8 cells (75 cm long)
- 4 bundles (six cells each)
- Internal recuperator
- Cast ceramic open end holder
- Operation on simulated coal gas
- Thermally self sustaining
- Modified existing balance of plant for stack test

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Phase I Integrated System

Cell Stack

Complete System

E F NT SFC

July 2009

10th Annual SECA Workshop

Phase I Stack Test Results

Phase I Minimum Requirements		Siemens System Test Results
DELIVERABLE POWER RATING	≥ 10 kW	10 kW
STEADY STATE TEST (Normal Operating Conditions)	5000 hours	5300 hours
	Δ Power < 4.0% degradation/1000 hours	No detectable degradation
TEST SEQUENCE	 1) Start-up and conditioning 2) Peak Power Test (after ~300 hours) 3) VJ curve 3) Steady State Test (balance of 5000 hours) 4) Shut-down 	In accordance with DOE approved Test Plan
FUEL TYPE	Simulated (subject to DOE concurrence, up to 25% CH4, dry basis)	Hydrogen and simulated coal gas
AVAILABILITY	Report availability	Availability factor of 85% at 50% power or greater
Slide 18 July 200	Copyright © Siemens Energy 9 10 th Appual SECA Workshop	y Inc. 2009. All Rights Reserved E E NT SEC

Cell Development . . .

- Cell Fabrication
 - Seamless closed end
 - One-Step sintering of cathode
 - Mass production concepts for plasma spray
- Cell Power Enhancement

... Results in cost reduction, scale-up and manufacturability

Copyright © Siemens Energy Inc. 2009. All Rights Reserved Jal SECA Workshop E F NT SFC

Slide 19

10th Annual SECA Workshop

E F NT SFC

Present Process To Attach Closed End

Closed end cap is attached to the cell in the green stage and the assembly is sintered

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 20

July 2009

10th Annual SECA Workshop

Seamless Closed End

Closed end cap is extruded with the cell ... resulting in reduced labor

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 21

July 2009

10th Annual SECA Workshop

Horizontal (One-Step) Sintering of Cathode

- Old process
 - Two- step sintering
 - Horizontal sintering (~ 1200 °C) followed by vertical sintering at ~1500 °C
- New process
 - Developed non-reactive substrate to sinter cathodes in one step up to ~1500 °C

... resulting in reduced labor, uniform porosity, and uniform dimensions

		Copyright © Siemens Energy Inc	c. 2009. All Rights Reserved
Slide 22	July 2009	10 th Annual SECA Workshop	E F NT SFC

Plasma Spraying

Present Process

- Single part per event
- One gun system
- Each surface is individually coated
- Significant part handling
- Not scale-up friendly

Copyright © Siemens Energy Inc.2009. All Rights Reserved10th Annual SECA WorkshopE F NT SFC

Plasma Spraying Concept for Mass Production

Manufacturing Carousel Design

- Multiple cells processed in one event
- Plasma guns travel vertically while carousel rotates
- Multiple plasma guns
- Robust to dimensional part variation
- All surfaces coated simultaneously
- Significant reduction in spray time

E F NT SFC

Cell Power Enhancement

The electrical performance of Siemens cathode supported cells is primarily influenced by the cathode– electrolyte interface due to high polarization

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

10th Annual SECA Workshop

Cell Power Enhancement

- Lowered electrolyte densification temperature by ~300 °C through materials and processing improvements
 - Maintain active cathode layer porosity
 - Prevent formation of insulating phases at the cathodeelectrolyte interface
- Reduced electrolyte thickness by 50%
 - > Materials and process development work done on <u>cylindrical</u> cells
 - **Readily transferrable to Delta8 cells**

E F NT SFC

Slide 26

10th Annual SECA Workshop

Electrolyte Microstructures

1/2 Thickness electrolyte

1/4 Thickness electrolyte

Cell Performance – Cylindrical Cells

50% higher power density at 0.70 V			
Slide 28	July 2009	Copyright © Siemens Energy Inc 10 th Annual SECA Workshop	. 2009. All Rights Reserved E F NT SFC

Voltage Stability of Power Enhanced Cylindrical Cell

Delta8 Cells – Increased Cell Length and Area

1x8 Delta8 Bundle (1 M active length cells)

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

10th Annual SECA Workshop

Performance Projection - 1 M Delta8 Cells and Bundles

24 cylindrical cells DC power: 2.6 kWe Weight: 34 kg 8 Delta8 cells DC power: 5.8 kWe* Weight: 32 kg

Reduced weight by 5% and increased power by 120%, resulting in lower cost and smaller footprint

Slide 32

10th Annual SECA Workshop

E F NT SFC

Basic Building Block for Larger Units

- Eight 1 M Delta8 cells
- Fully integrated bundle assembly contains fuel plenum, cell bundle, open end seal, recuperator, exhaust plenum, intake air plenum and electrical connectors
- Cast ceramic components
- Provides fuel, air, exhaust and electrical interfaces for the fuel cells
- Compact recuperator preheats incoming air and eliminates external hot piping

Six basic building blocks will be tested in Phase II stack test

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 33

10th Annual SECA Workshop

E F NT SFC

Phase II Stack

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

10th Annual SECA Workshop

Delta8 Cell Module - Power System Building Block

- 480 Delta8 cells
- Natural gas fuel
- Nominal Power ~ 250 kW (atm. pressure)
- Module Dimensions:
 - Height 3.4 m

Width – 3.7 m

Depth – 1.9 m

Larger fuel cell power systems are effectively assembled by aggregating modules

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Slide 35

10th Annual SECA Workshop

Summary

- Met all Phase I milestones
- Established Delta8 cell processing parameters and fabricated both 75 cm and 100 cm active length cells and bundles with these cells
- Demonstrated seamless closed end extrusion for Delta8 cells
- Showed significant progress in developing mass production concept of plasma spray process
- Improved power density of Delta8 cells by approximately 10% over first generation cells
- Demonstrated voltage stability of Delta8 cells
- Showed 50% power enhancement in tubular cells by lowering the electrolyte densification temperature and reducing the electrolyte thickness in half Reduction of electrolyte thickness to ¼ of present value is feasible
- Completed design of Phase II stack test
- Initiated assembly of Phase II stack test

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

Acknowledgements

- DOE-NETL. Contact No.DE-FC26-05NT42613
- Wayne Surdoval, Travis Shultz, Heather Quedenfeld NETL
- Siemens Stationary Fuel Cells Team

Copyright © Siemens Energy Inc. 2009. All Rights Reserved

