SOFC Modeling for IGFC System Analysis

10th Annual SECA Workshop Pittsburgh, PA July 16, 2009

J. D. Powers J. Brouwer M. Li G. S. Samuelsen National Fuel Cell Research Center University of California, Irvine, CA 92697-3550

1

Coal-Based Power Systems

US DOE Targets

- 250-500 MW net power output
- HHV efficiency: 45-50% (2010), 60% (2015)
- 90+% carbon capture, ready for sequestration
- 99% SO₂ removal, 90% Hg removal
- NOx emissions < 0.01 lb/MMBtu
- COE increase <10% w/sequestration
- Reduced water requirement desired

Coal Industry Concerns

- Capital cost, reliability
- Efficiency traditionally less important low fuel cost
- Cost of Electricity (¢/kWh)

Toward a Competitive Coal Power System

Key approaches for 60% HHV efficiency, competitive COE:

- High-efficiency gasifier, methane-containing syngas
- SOFC-based power block
- Large air temperature rise across SOFC subsystem

SOFC requirements and trends:

- Increasing operating voltage
- Increasing power density
- Increasing internal reforming
- Increasing ΔT (air and cell)

SOFC Cooling

Air blower/compressor major equipment parasite in IGFC power block

- Air flow is primary source of cooling for SOFC
- Reducing air enables more SOFCs to be driven for the same compressor power

Increasing air temperature rise reduces air flow requirements

- Modern planar SOFCs operate in 600°C 850°C range
 - High temperatures, limited by interconnect degradation
 - Low temperatures, limited by SOFC performance
- Desirable to achieve 150-200°C temperature rise (in SOFC subsystem)

High-methane fuel enables endothermic internal reforming

- Methane-free fuel, <20% Ua achievable for 150-200°C ΔT
- Methane content >20% enables 40-50% Ua for the same ΔT
- With high-methane fuel, details inside fuel cell become important

Thermodynamic vs. Dimensional SOFC Model

- Thermodynamic model
 - Global mass & energy balance
- Dimensional model
 - Dimensional distribution of temperature, species concentrations, current density, local Nernst potential, etc.

SOFC Dimensional Model Development

Concomitant reformation, water gas shift, electrochemistry, heat transfer, and mass transport processes must be understood and resolved for robust SOFC design in IGFC

Desired:

- Dimensional model for SOFC
- Stand-alone
- Compatible with system models

Approach:

- Use finite volume method, develop quasi-2D model
- Develop and evaluate in Matlab
- Create stand-alone model in C++, capable of linking with system models (Aspen+)
- Version also developed in Fortran (also linkable)

Dimensional SOFC Model Approach

Planar SOFC Model Geometry

Quasi-2D co/counter flow planar SOFC model **Rib Width** length (half) Fuel Side Interconnect Interconnect Channel Height **Fuel Channel**

Height

(half)

Air Side Interconnect

PEN Structure -

Air Channel

Key Simplifications & Assumptions

- Steady state modeling
- Four separate temperatures: PEN structure, air flow, fuel flow, interconnect
- Each control volume has uniform species concentration in fuel or air channel
- H₂ electrochemical oxidation only, CO oxidized through watergas shift
- Water-gas shift always at equilibrium
- Methane reformation controlled by kinetics
 - Multiple approaches implemented Achenbach, PNNL
- External heat loss by radiation only
- Large Peclet number: negligible axial heat conduction in gases

Numerical Scheme

Cooperation with System Analysis Tool

Number of parameters

SOFC

Integer:	6	Real:	20	•	Character:	20	-	
-Values fr	or parameters							

	Integer	Real	Character	1
1	12506	0.8	STACK NUMBER & WORKING VOLTAGE (V)	
2	100	1045	CELL NUMBER & ENV TEMPERATURE (K)	
3	100	0	CHANNEL NUMBER & DP AT ANODE SIDE (PA)	1
4	40	0	CONTROL VOLUME NUMBER & DP AT CATHODE SIDE (PA)	1
5	8	0.1	SPECIES NUMBER & GEOP1: LENGTH (M)	1
6	1	0.003	RADIATION HEAT LOSS CONTROL & GEOP2: WIDTH (M)	
7		0.00242	GEOP3: RIBWIDTH (M)	1
8		0.001	GEOP4: FUEL CHANNEL HEIGHT (M)	1
9		0.002	GEOP5: AIR CHANNEL HEIGHT (M)	1
10		0.00325	GEOP6: OVERALL HEIGHT (M)	1
11		0.0006	GEOP7: ANODE THICKNESS (M)	1
12		3E-05	GEOP8: CATHODE THICKNESS (M)	1
13		5E-06	GEOP9: ELECTROLYTE THICKNESS (M)	1
14		6677.60428	AVERAGE CURRENT DENSITY (A/M2)	
15		0.85000983	FUEL UTILIZATION FACTOR	
16		0.18545413	AIR UTILIZATION FACTOR	
17		1061.8604	AVERAGE SOLID TEMPERATURE (K)	-

Model Verification: IEA Benchmarks

Benchmark 1, Humidified H₂

Benchmark 2, Pre-reformed Natural Gas

Paramotor	Bonchmark 1 Data	Campanari	Costamagna	Decemeter	Ronohmark 2 Data	Campanari	Costamagna
ralameter	Deficilitate I Data	Parameter	Parameter	Parameter	benchmark z Data	Parameter	Parameter
Voltage (V)				Voltage (V)			
High	0.722	0.715	0.704	High	0.649	0.626	0.607
Low	0.702			Low	0.633		
Current Density (A/m2)	High/Low			Current Density (A/m2)	High/Low		
Max	3957/3725	3961	3780	Max	3665/3040	3686	3718
Min	1366/1020	977	1190	Min	2508/1748	1663	1586
Solid Structure	High/Low			Solid Structure	High/Low		
Temperature (K)				Temperature (K)	0,		
Max	1371/1321	1333	1337	Max	1307/1294	1298	1304
Min	1203/1182	1190	1189	Min	1135/1120	1120	1120
Outlet Gas Temperature (K)	High/Low			Outlet Gas Temperature (K)	High/Low		
air	1340/1321	1332	1335	air	1299/1289	1296	1301
fuel	1341/1321	1333	1337	fuel	1299/1294	1298	1304

Toward Modern Performance Parameters

- Sensitivity Analyses:
 - Fuel: 90% H₂ + 10%H₂O (molar fraction)
 - Air: $21\% O_2 + 79\% N_2$ (molar fraction)

	Baseline	Test 1	Test 2	Test 3	Test 4
E _{a, anode} (kJ/mol)	100	75	50	50	50
E _{a, cathode} (kJ/mol)	120	120	120	100	80
Fuel inlet flow rate	2.3799	3.4336	3.5425	22.013	56.558
(10 ⁻⁶ mol/s)					
Fuel utilization	0.850	0.850	0.850	0.850	0.850
Air utilization	0.143	0.143	0.143	0.143	0.143
Average current density (A/cm ²)	0.0648	0.0935	0.0964	0.5995	1.5405
Average power density (W/cm ²)	0.0518	0.0748	0.0772	0.4796	1.2324
Anode activation loss (mV)	45.92	4.32	0.26	1.73	4.54
Cathode activation loss (mV)	91.53	133.12	137.13	101.99	26.49
Ohmic loss (mV)	3.35	4.87	5.04	33.27	85.02
Anode diffusion loss (mV)	0.78	1.12	1.16	7.26	20.54
Cathode diffusion loss (mV)	0.024	0.033	0.034	0.22	0.64
Fuel outlet temperature (K)	1126.9	1127.9	1127.9	1132.7	1138.4
Air outlet temperature (K)	1126.8	1127.7	1127.8	1128.9	1128.5
nced Power and Energy Program.	SEC A 2009	1			13

SOFC Performance

- Targeting state-of-the-art performance
 - IGFC systems for the next decade
- 0.400 W/cm² at 1 atm, 0.8 V
- Significant performance increases with pressure: P^{1/4} improvement in cathode polarization
- Working toward parameter validation

Sample Model Results on Humidified H₂

fuel: 90 mol.% H_2 , 10 mol.% H_2O adiabatic, atmospheric operation 85% fuel utilization, 14.3% air utilization

Sample Model Results: Syngas

co-flow species distribution

counter-flow species distribution

o fuel mole composition:

26.26% H₂, 17.1% CH₄, 2.94% CO, 4.36% CO₂, 49.34% H₂O

- o adiabatic, atmospheric operation
- o 85% fuel utilization, 14.3% air utilization

Sample Model Results: Syngas

o fuel mole composition:

26.26% H₂, 17.1% CH₄, 2.94% CO, 4.36% CO₂, 49.34% H₂O

- o adiabatic, atmospheric operation
- o 85% fuel utilization, 14.3% air utilization

Sample Model Results: Syngas

co-flow

counter-flow

electrochemical performance

electrochemical performance

o fuel mole composition:

26.26% H₂, 17.1% CH₄, 2.94% CO, 4.36% CO₂, 49.34% H₂O

- o adiabatic, atmospheric operation
- o 85% fuel utilization, 14.3% air utilization

Nernst Potential

- Nernst varies significantly with flow configuration
- In many cases, counterflow enables improved operating voltage

Effects of Internal Reforming

Implications for IGFC Systems

- Best system performance, cost:
 - High methane content syngas
 - High air temperature rise through SOFC
 - High fuel cell power density
- For these conditions, internal details of SOFC important
 - Performance dependent on flow configuration
 - Peak temperatures may not be at inlet and outlet
 - Need to integrate dimensional models with system analysis

Increasing Methane and Temperature Profiles

Methane composition & flow configuration

co-flow case PNNL CH₄ reformation kinetics U_f = 85% (except for 80% OCR), V = 0.8 V U_a varied to achieve about 200K Δ T at air side higher OCR, higher CH4 (0 \rightarrow 20.2% vol.)

February 25, 2009

counter-flow case PNNL CH₄ reformation kinetics $U_f = 85\%$, V = 0.8 V U_a the same as corresponding co-flow cases

higher OCR, higher CH4 ($0 \rightarrow 20.2\%$ vol.)

0-D vs. 1-D Comparison

Temperature rise set to 150°C

- 0-D: Air temperature rise
- 1-D: Solid temperature ΔT

Internal reforming does reduce air-flow requirement

- Air temperature rise is not a good proxy for solid ΔT
- 0-D model overestimates cooling benefit

Sample Results: IGFC System

1 atm, 0.80 V, 85% Uf, 200°C air T rise (~50% Ua), ~30% CH₄ in syngas

- System analysis (w/0-D thermodynamic model) results in Ua = 50%
- Coflow configuration: fast reformation leads to excessive cooling at inlet
- Counterflow configuration: significant internal temperature spike

Strategies for Mitigating High ∆T Challenge

- Increase air flow through SOFC
 - Increased parasitic loss and lesser reformation cooling benefit
- Recycle air and/or fuel
- Increase interconnect thickness
 - Improved in-plane thermal conduction
 - Increased material cost
- Increase operating voltage
 - Improved efficiency, lower heat generation
 - Reduced power density, increased SOFC cost
- Retard reformation kinetics
- Cascade stacks: series air, parallel fuel
- Move reforming off anode: reforming channels

Summary & Conclusions

IGFC system design requires dimensional SOFC analysis

- Capture synergies and limitations inherent to SOFC
- Thermodynamic SOFC modeling not sufficient
- Design strategies exist to mitigate SOFC internal thermal limitations

SOFC steady-state performance and thermal behavior highly dependent on stack configuration

Detailed quasi-2D planar SOFC model developed for IGFC system analysis

- Designed for use in conjunction with IGFC design and analysis
- Integrates with system modeling software
- Calculates thermal, species, potential profiles

Acknowledgements

- This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC26-04NT41817.313.01.05.036.
- The authors gratefully acknowledge the technical guidance and insights provided by Wayne Surdoval and Travis Shultz of the U.S. DOE.
- The authors thank Dale Keairns, Mo Khaleel and Kurt Recknagle for very useful discussions.

