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Coal-Based Power Systems
US DOE Targets
• 250-500 MW net power output
• HHV efficiency: 45-50% (2010), 60% (2015)
• 90+% carbon capture, ready for sequestration
• 99% SO2 removal, 90% Hg removal
• NOx emissions < 0.01 lb/MMBtu
• COE increase <10% w/sequestration
• Reduced water requirement desired

Coal Industry Concerns
• Capital cost reliability• Capital cost, reliability
• Efficiency traditionally less important – low fuel cost
• Cost of Electricity (¢/kWh)
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Toward a Competitive Coal Power System

Key approaches for 60% HHV efficiency, competitive COE:
• High-efficiency gasifier, methane-containing syngasg y g g y g
• SOFC-based power block
• Large air temperature rise across SOFC subsystem

SOFC requirements and trends:
• Increasing operating voltage
• Increasing power density
• Increasing internal reforming
• Increasing ΔT (air and cell)
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SOFC Cooling
Air blower/compressor major equipment parasite in IGFC power block
• Air flow is primary source of cooling for SOFC
• Reducing air enables more SOFCs to be driven for the same 

compressor power

Increasing air temperature rise reduces air flow requirements
• Modern planar SOFCs operate in 600°C – 850°C range

• High temperatures limited by interconnect degradation• High temperatures, limited by interconnect degradation
• Low temperatures, limited by SOFC performance

• Desirable to achieve 150-200°C temperature rise (in SOFC subsystem)

High-methane fuel enables endothermic internal reforming
• Methane-free fuel <20% Ua achievable for 150-200°C ΔTMethane-free fuel, <20% Ua achievable for 150-200 C ΔT
• Methane content >20% enables 40-50% Ua for the same ΔT
• With high-methane fuel, details inside fuel cell become important
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Thermodynamic vs. Dimensional SOFC Model

• Thermodynamic model
• Global mass & energy balance

• Dimensional model
• Dimensional distribution of temperature, species concentrations, current 

density local Nernst potential etcdensity, local Nernst potential, etc.
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SOFC Dimensional Model Development

Concomitant reformation, water gas shift, electrochemistry, heat 
transfer, and mass transport processes must be understood and 
resolved for robust SOFC design in IGFC 

Desired:
Di i l d l f SOFC• Dimensional model for SOFC

• Stand-alone
• C tibl ith t d l• Compatible with system models

Approach:Approach:
• Use finite volume method, develop quasi-2D model
• Develop and evaluate in Matlab• Develop and evaluate in Matlab
• Create stand-alone model in C++, capable of linking with 

system models (Aspen+)

Advanced Power and Energy Program: SECA 2009

y ( p )
• Version also developed in Fortran (also linkable)
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Dimensional SOFC Model Approach
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Planar SOFC Model Geometry

Quasi-2D co/counter flow planar SOFC model
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Key Simplifications & Assumptions

• Steady state modeling
• Four separate temperatures: PEN structure, air flow, fuel flow, p p

interconnect
• Each control volume has uniform species concentration in fuel 

i h lor air channel
• H2 electrochemical oxidation only, CO oxidized through water-

gas shiftgas shift
• Water-gas shift always at equilibrium
• Methane reformation controlled by kineticsMethane reformation controlled by kinetics

• Multiple approaches implemented – Achenbach, PNNL

• External heat loss by radiation onlyy y
• Large Peclet number: negligible axial heat conduction in gases
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Numerical Scheme
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Cooperation with System Analysis Tool
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Model Verification: IEA Benchmarks

Benchmark 1, Benchmark 2, 
Humidified H2 Pre-reformed Natural Gas
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Toward Modern Performance Parameters
• Sensitivity Analyses:

• Fuel: 90% H2 + 10%H2O (molar fraction)
• Ai 21% O + 79% N ( l f ti )• Air: 21% O2 + 79% N2 (molar fraction)
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SOFC Performance
• Targeting state-of-the-art 

performance 
• IGFC systems for the next Fuel: 80% H2, 10% H2O, 10% N2• IGFC systems for the next 

decade
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Sample Model Results on Humidified H2

counter-flowco-flow
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fuel: 90 mol.% H2, 10 mol.% H2O
adiabatic, atmospheric operation 85% fuel utilization, 14.3% air utilization



Sample Model Results: Syngas
co-flow 

species distribution
counter-flow 

species distribution

o fuel mole composition:
26.26% H2, 17.1% CH4, 2.94% CO, 4.36% CO2, 49.34% H2O

o adiabatic, atmospheric operation
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Sample Model Results: Syngas

co-flow temperature counter-flow temperature

o fuel mole composition:
26.26% H2, 17.1% CH4, 2.94% CO, 4.36% CO2, 49.34% H2O

o adiabatic, atmospheric operation
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Sample Model Results: Syngas
co-flow 

electrochemical performance
counter-flow

electrochemical performance

o fuel mole composition:
26.26% H2, 17.1% CH4, 2.94% CO, 4.36% CO2, 49.34% H2O

o adiabatic, atmospheric operation
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Nernst Potential

• Nernst varies significantlyNernst varies significantly 
with flow configuration

• I t fl• In many cases, counterflow
enables improved operating 
voltage

Advanced Power and Energy Program: SECA 2009 19



Effects of Internal Reforming
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Implications for IGFC Systems

• Best system performance, cost:
• High methane content syngas
• High air temperature rise through SOFC
• High fuel cell power density

• For these conditions, internal details of SOFC important
• Performance dependent on flow configurationPerformance dependent on flow configuration
• Peak temperatures may not be at inlet and outlet
• Need to integrate dimensional models with system analysis
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Increasing Methane and Temperature Profiles

Methane composition & flow configuration

co-flow case
PNNL CH f ti ki ti

counter-flow case
PNNL CH f ti ki tiPNNL CH4 reformation kinetics 

Uf = 85% (except for 80% OCR), V = 0.8 V
Ua varied to achieve about 200K ∆T at air side 
higher OCR higher CH4 (0→20 2% vol )

PNNL CH4 reformation kinetics 
Uf = 85%, V = 0.8 V
Ua the same as corresponding co-flow cases
higher OCR higher CH4 (0→20 2% vol )
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0-D vs. 1-D Comparison

Temperature rise set to 150°C V = 0 80V Uf = 85%Temperature rise set to 150 C
• 0-D: Air temperature rise
• 1-D: Solid temperature ΔT

V = 0.80V, Uf = 85%

Internal reforming does reduce 
air-flow requirementq
• Air temperature rise is not a 

good proxy for solid ΔT
• 0 D model overestimates• 0-D model overestimates 

cooling benefit
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Sample Results: IGFC System
1 atm, 0.80 V, 85% Uf, 200°C air T rise (~50% Ua), ~30% CH4 in syngas 
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• System analysis (w/0-D thermodynamic model) results in Ua = 50%y y ( y ) %

• Coflow configuration: fast reformation leads to excessive cooling at inlet
• Counterflow configuration: significant internal temperature spike
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Strategies for Mitigating High ΔT Challenge
• Increase air flow through SOFC

• Increased parasitic loss and lesser reformation cooling benefit

• Recycle air and/or fuel

• Increase interconnect thickness
• Improved in-plane thermal conduction
• Increased material cost

• Increase operating voltage
• Improved efficiency, lower heat generation
• Reduced power density, increased SOFC costp y

• Retard reformation kinetics

• Cascade stacks: series air parallel fuel• Cascade stacks: series air, parallel fuel

• Move reforming off anode: reforming channels
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Summary & Conclusions

IGFC system design requires dimensional SOFC analysis 
• Capture synergies and limitations inherent to SOFC
• Thermodynamic SOFC modeling not sufficient
• Design strategies exist to mitigate SOFC internal thermal limitations

SOFC steady-state performance and thermal behavior highly 
dependent on stack configurationdependent on stack configuration

Detailed quasi-2D planar SOFC model developed for IGFC system q p p y
analysis

• Designed for use in conjunction with IGFC design and analysis
I t t ith t d li ft• Integrates with system modeling software

• Calculates thermal, species, potential profiles
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