

NATIONAL ENERGY TECHNOLOGY LABORATORY

10th Annual SECA Workshop Pittsburgh, PA July 14-16, 2009

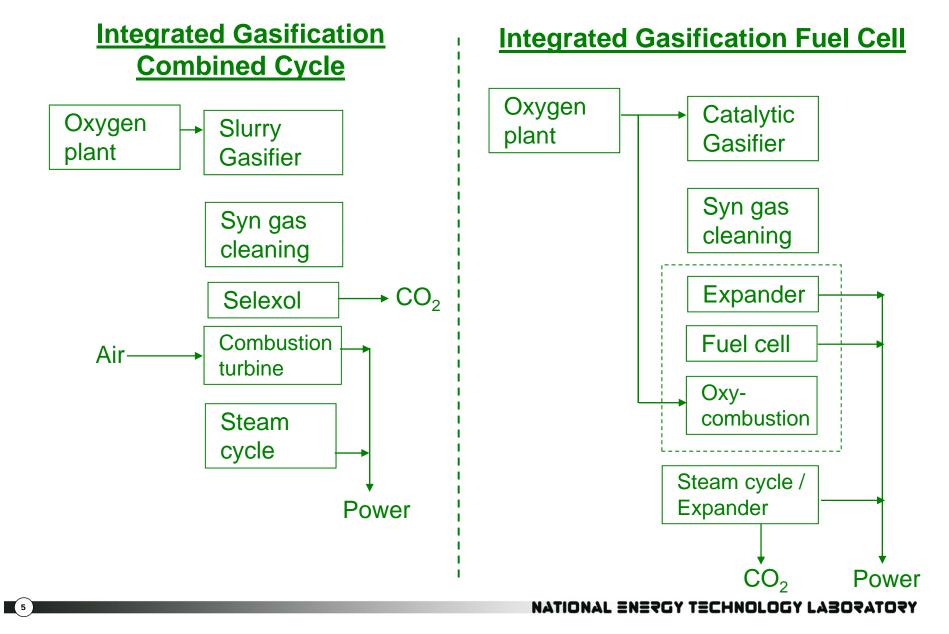
Integrated Gasification Fuel Cell Performance and Cost Assessment

Presented by Phil DiPietro, Division Director Situational Analysis and Benefits Division Office of Systems Analyses and Planning, NETL

Co-analysts

2

- Kristin Gerdes
- Dale Keairns
- Dick Newby
- And help and advice from Eric Grol and Jan Thijssen


Summary Points

- Paradigm change: Fuel cells offer higher efficiency and lower capital
- Percent CO₂ capture matters: At \$50/mtCO₂, 100%
 CO₂ capture saves 0.5 cents/kWh compared to 90%

Objective: evaluate a power plant based on fuel cell conversion of syngas as an investment option

- Scope: central station, baseload duty cycle
- Assess atmospheric and pressurized fuel cell stacks
- Assume DOE goals for cost and performance of the fuel cell block
- Use unit operation cost data from IGCC studies
- Include cost of CO₂ storage, emissions
- Quantify water use/consumption

Configurations of Advanced Coal-Based Power Plants

Sub-system Technology

Sub-system	IGCC	IGFC (atm)	IGFC (press)	
Gasifier	Slurry Fed	Catalytic		
Gas Cleaning	Dry	Dry	Humid	
Syngas Conversion	Advanced "F" Turbine	Fuel cell, 20 psia	Fuel cell, 270 psia	
Steam Cycle	Subcritical	Subcritical	None	
Carbon Capture	Selexol (90%)	Oxy-combustion of anode off-gas (~99%)		

(6)

Performance and Cost Summary

	Conventional IGCC	IGFC (Atm SOFC)	IGFC (Press SOFC)
Efficiency (%, HHV)	32.5	49.4*	56.2**
CO ₂ Emissions (kg CO ₂ /MWh net)	90	6	6
Water Usage (gal/MWh net)	570	240	170
Capital Cost (2007\$/kW)	2,400	2,000	1,800
LCOE (cents/kWh)	10.2	8.8	7.9

* The efficiency without CO₂ compression is 52.6% ** The efficiency without CO₂ compression is 60.1%

NATIONAL ENERGY TECHNOLOGY LABORATORY

7

Fuel Cell Performance Assumptions

SOFC Parameter	SOFC (atm)	SOFC (press)		
Inlet/Outlet Temperature	650 / 800 C			
Fuel Single Pass Utilization	70%			
Current Density	500 mA/cm ²			
Outlet Pressure	20 psia 270 psia			
Nernst Potential*	0.84	0.92		
Stack Overpotential	40 mV	50 mV		
Degradation Rate	0.1% / 1,000 hrs	0.1% / 1,000 hrs		

* Nernst calculated based on SOFC exit conditions that includes operating pressure and gas composition

8

Fuel Cell Cost Assumptions

- 700 \$/kW AC output from the stack (\$2007)
 - Installed cost
 - Consistent with DOE cost target
 - Includes associated heat exchangers, blowers, controls and DC-to-AC rectifier
- Replacement cost assumed to be \$100/kW AC output from the stack (\$2007)

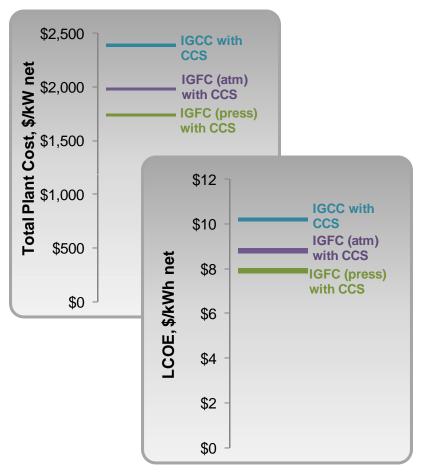

Catalytic Gasifier

- Good match with the fuel cell
 - Consumes less O₂
 - ~ 0.25 kg O_2 per kg coal versus ~ 0.7 for slurry fed
 - Makes methane
 - 17 vol% in syngas versus ~ 0 vol% for slurry
 - Uses steam
- Large area of technology risk is in catalyst recovery/regeneration
 - We use Exxon assumption of 2/3 recovery
 - Adds estimated 0.20 cents/kWh O&M cost

Oxy-combustion of Anode Off-gas

- Utilizes remaining fuel value and raises steam quality
- Eliminates water gas shift
- Avoids "touching" CO2, enables near 100% capture
- Un-reacted oxygen in effluent is an area for future study

Design for High SOFC Capacity Drives System Efficiency

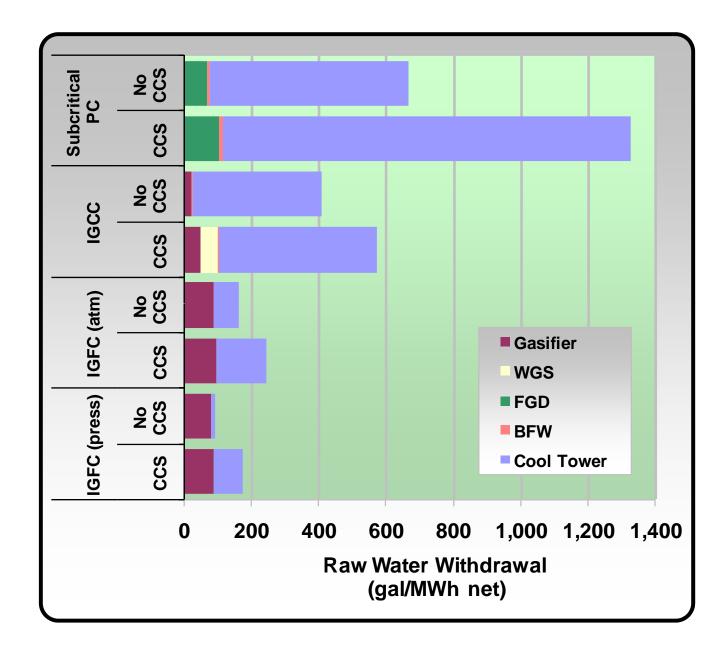


12

Cost Assessment of IGFC

Cost Approach

- Fuel cell system installed cost of \$700/kW AC output from stack (2007 dollars)
- Other major unit costs scaled from range of studies
- O&M costs and financial parameters consistent with NETL Bituminous Baseline Report (August 2007)
- High efficiency of IGFC and ease of CO₂ capture drives down capital costs and LCOE relative to today's IGCC technology

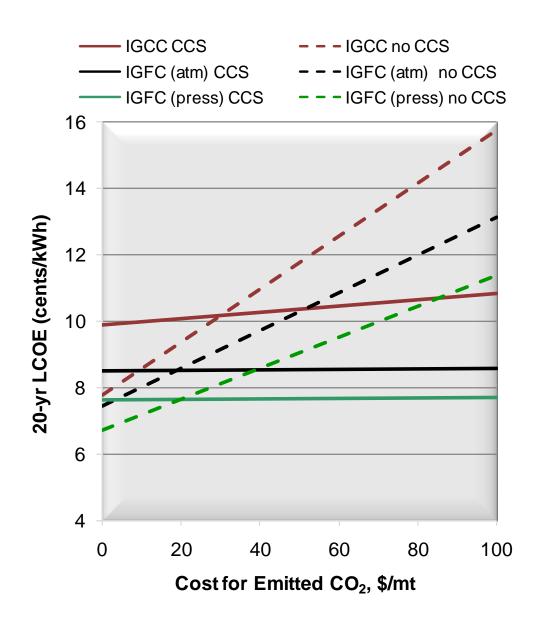


IGCC and IGFC Capital Costs, \$/kW

	IGCC	IGFC	Adv IGFC	Drivers of Cost Differences Relative to IGCC	
Gasification, ASU	1,085	620	550	 Catalytic Gasification (Low Temp, Oxygen) (-) Catalyst/Ash Handling and Coal Prep (+) System Efficiency (-) 	
Gas Cleaning	235	175	220	 Sulfur Polishing (+) Humid Gas Cleaning (Adv IGFC only) (+) System Efficiency (-) 	
Power Island	455	770	610	 Fuel Cell System (+) Parasitic Load (-) 	
CO ₂ Capture	245	135	125	 Oxycombustion v Selexol (-) System Efficiency (-) 	
Balance of Plant	370	285	235	System Efficiency (-)	
Total	2,390	1,985	1,740		
NATIONAL ENERGY TECHNOLOGY LABORATORY					

IGCC and IGFC with CCS LCOE

	IGCC	IGFC (atm)	Adv IGFC	Drivers of Cost Differences Relative to IGCC
Total Plant Costs (\$/kW)	2,390	1,985	1,740	
Variable O&M (cents/kWh)	0.8	1.1	1.1	 Stack Replacement (+) Gasifier Catalyst, Sorbents (+) System Efficiency (-)
Fixed O&M, \$/kW/yr	44	47	45	Plant Size (+)System Efficiency (-)
Fuel Cost, cents/kWh	1.9	1.2	1.1	System Efficiency (-)
CO2 Transport and Storage Cost, cents/kWh	0.35	0.25	0.20	 System Efficiency (-) Percent CO₂ captured (+)
LCOE (20-yr), cents/kWh	10.2	8.8	7.9	



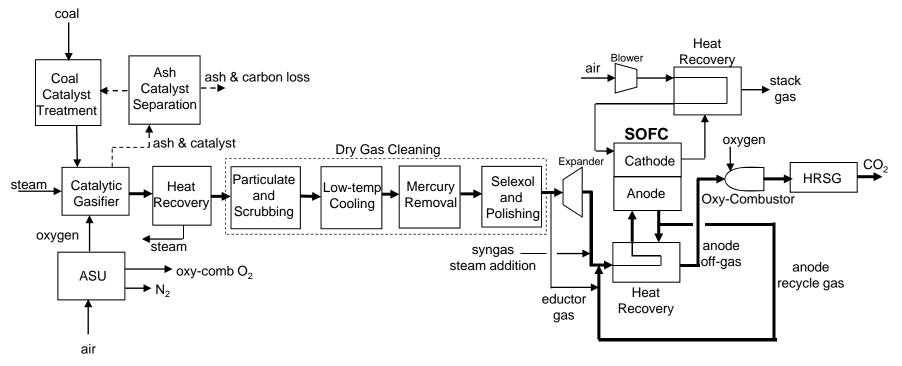
16

Effect of net CO₂ emissions on LCOE

Platform	Coal Use, Btu/kWh	Net CO ₂ Emissions, kgCO ₂ /MWh	Variable Cost for Fuel, cents/kWh	Variable Cost of CO ₂ Emissions @ \$50/mtCO ₂ , cents/kWh
IGCC	10,500	90	1.9	0.5
IGFC (Atm)	6,910	6	1.2	0.03
IGFC (Press)	6,070	6	1.1	0.03
PC (no capture)	9,280	860	1.6	4.3
PC (90% capture)	13,720	130	2.3	0.7

18

LCOE in a Carbon Constrained Scenario


IGCC, CO₂ capture becomes economically preferable to no capture at \$30/mt CO₂

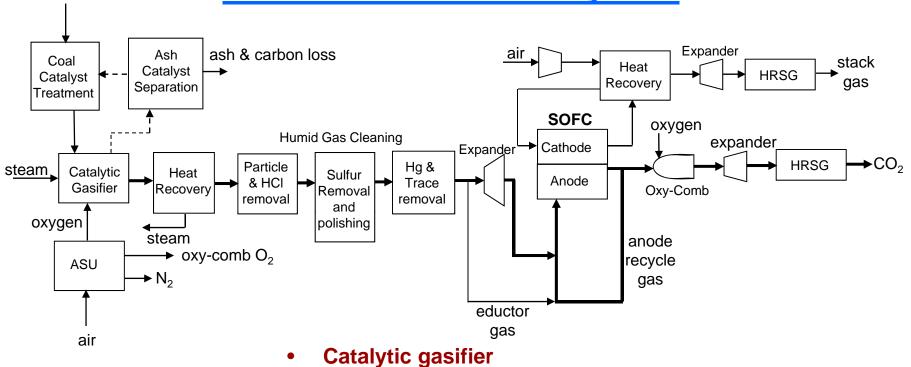
Fuel cells reduce the cross over to \$20/mt CO₂

Conclusions

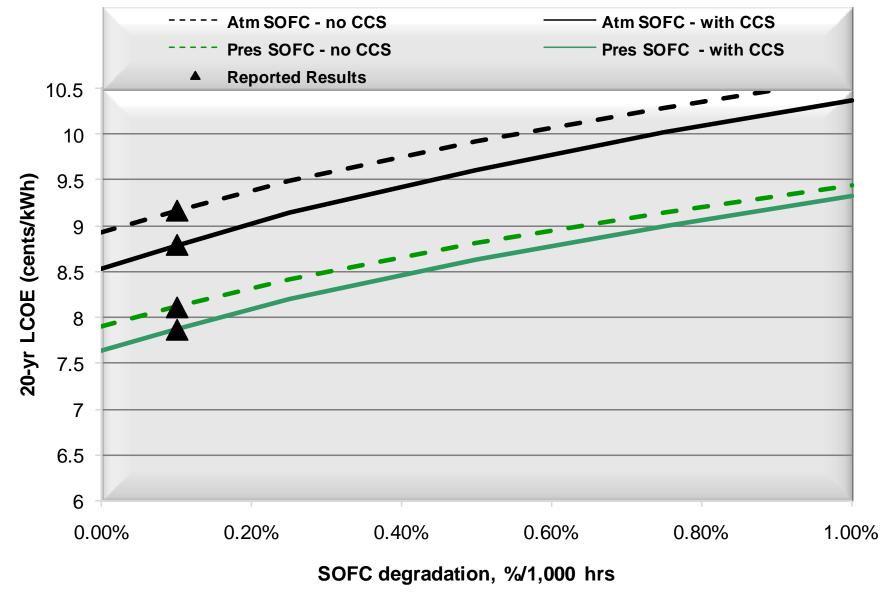
 IGFC platforms, based on a fuel stack that meets the program goals, offers both a step change in efficiency and reduced capital cost per kW and higher percent CO₂ capture and reduced water use

Advanced IGFC with Atmospheric SOFC and DGC Nominal 50% Efficient System

- Catalytic gasifier
- Oxy-combustor


(20)

Recycle gas eductor


High Performance IGFC System Nominal 60% Efficient System

coal

(21)

- Humid gas cleaning
- Pressurized SOFC
- Oxy-combustor
- Recycle gas eductor

22