Validation of Novel Planar Cell Design for Megawatt-Scale SOFC Power Systems

M.J. Day, Principal Investigator

10th Annual SECA Workshop Pittsburgh, PA July 16, 2009

Outline

- Introduction to the FlexCell planar cell design concept
- Objectives of SECA Project
- Core Data (ScSZ-based FlexCells)
- Results of SECA Project (YSZ-based FlexCells)
 - Cell Fabrication and Testing
 - FEA Modeling (Ohio State)
- Conclusions and Future Work

10th Annual SECA Workshop: July 16, 2009

Introduction to the FlexCell

Attributes

- Thin-electrolyte for high performance
- Small repeat units for high power density
- Dense perimeter for ease of sealing
- Thin electrodes to facilitate gas diffusion
- Thin anode for redox cycling tolerance
- Electrode material flexibility

Project Objectives

Overall Project Goal

 Validate performance, robustness, cost and scalability of NexTech's FlexCell planar cell design for coal-based SOFC power systems

Phase I Objectives

- Demonstrate that high performance can be achieved in FlexCells made with YSZ as the electrolyte material
- Demonstrate that FlexCells have sufficient mechanical robustness for SOFC applications

Demonstrate potential of achieving cell manufacturing cost of less than \$50/kW

Core Data (ScSZ-Based FlexCells)

10th Annual SECA Workshop: July 16, 2009

High Performance and Efficiency

Internal Reforming of Methane

10th Annual SECA Workshop: July 16, 2009

Long-Term Durability

Tolerance to Thermal Cycling

Redox Cycling (3-Cell Stack)

Sulfur Tolerance (Hydrogen Fuel)

Sulfur Tolerance (Reformate Fuel)

10th Annual SECA Workshop: July 16, 2009

Sulfur Tolerance (Reformate Fuel)

NexTech SOFC Stacks

500-watt stack module (10 cells)

Stack Dimensions (without endplates)

- L = 22.2 cm
- W = 14.5 cm
- H = 10.6 cm

10th Annual SECA Workshop: July 16, 2009

Stack Performance (10-Cell Stack)

Large-Area FlexCell Manufacturing and Testing

10th Annual SECA Workshop: July 16, 2009

470-cm² Area FlexCell

Testing of Large-Area FlexCells

10th Annual SECA Workshop: July 16, 2009

1200-cm² Area FlexCell

Fabrication and Testing of YSZ-Based FlexCells

Fabrication of YSZ-Based FlexCells

Architecture Variables

- Support thickness: 80-160 µm
- Membrane thickness: 24-32 μm
- Percent thin membrane in active region: 65-75 percent
- Support mesh pattern/geometry

10th Annual SECA Workshop: July 16, 2009

ScSZ vs. YSZ FlexCells Standard Geometry

Ultra-Thin FlexCell Pole Curve Data

10th Annual SECA Workshop: July 16, 2009

YSZ-Based FlexCell Pole Curve Data

10th Annual SECA Workshop: July 16, 2009

YSZ-Based FlexCell Long-Term Data (Coal Gas)

FEA Modeling of Mechanical Robustness of FlexCells (Ohio State)

10th Annual SECA Workshop: July 16, 2009

FEA Models of FlexCell Active Area

- Circles (upper right)
- Rounded Corner Hexes (lower right)
- Two-dimensional FlexCell mesh (lower left)

FEA Models of FlexCell Active Area

- Circles: Sample Contour (upper right).
- Rounded Hexes: Sample Contour (lower right).
- Effective properties found to rely on area, not shape (lower left).

Large Circles vs. Rounded Hexes

10th Annual SECA Workshop: July 16, 2009

FEA Modeling (Ohio State)

Principle stress contours for a large-area membrane with support ribs, with uniform pressure applied to the entire membrane with outer frame area being fully constrained

Conclusions and Future Work

Conclusions

- Fabrication methods for ScSZ-based FlexCells were successfully transferred to YSZ-based FlexCells.
- High performance in YSZ-based FlexCells has been demonstrated at the single-cell level.
- Stable performance has been achieved in testing with simulated coal gas.
- Finite element analysis is an effective design tool for mechanically robust FlexCell architectures.

NexTech's *FlexCell* is a promising cell design for coal-based, MW-scale SOFC power systems

Future Work

- Continued work to assess effects of FlexCell geometry on SOFC performance.
- Additional long-term testing on simulated coal gas
- Fabrication of YSZ-based FlexCells with 500-cm²
 area, and single-cell testing of large-area FlexCells
- Continued FEA modeling of mechanical robustness, including validation testing
- Completion of the manufacturing cost analysis

NEXTECHMATERIALS

Acknowledgements

Funding

- DOE/SECA
- Ohio's Third Frontier Program
- U.S. Air Force
- Office of Naval Research

NexTech Colleagues

- Scott Swartz
- Lora Thrun
- Robin Kimbrell

Ohio State Colleagues

- Professor Mark Walter
- Angel Dharsh Suresh
- Ryan Berke

