SOFC test fixture development and materials evaluation at PNNL

Y-S Chou, J. W. Stevenson, J-P Choi, C-M Wang, Z.G. Yang, G.G. Xia, K.S. Weil, J.D. Templeton,

Energy Materials Department Pacific Northwest National Laboratory K2-44, Richland, WA 99354

Presented at 10th Annual SECA Workshop, Pittsburgh, July 14-16, 2009

Outline

- Conclusions
- Objectives
- Test Fixture: Materials, Design, and Assembly
- Cell Testing Results and Materials Characterization
- Future Work
- Conclusions
- Acknowledgements

Conclusions/Accomplishments

- Two stack test vehicles based on 50mm x 50mm cells (40mm x 40mm cathode) have been developed for evaluation/validation of new materials, fabrication processes, design concepts.
- Candidate materials have been validated in a single cell testing for ~2300 h:
- 1. Refractory sealing glass showed hermeticity, minimal reaction with YSZ and aluminized SS441.
- 2. (Mn,Co)-spinel coating was effective in blocking Cr at cathode IC.
- **3.** Aluminization was able to minimize (Ba,Sr)-chromate formation.
- A novel double-seal concept was developed and demonstrated successfully for 25 deep thermal cycles.
- Developing revised fixture design for multiple cells testing.
- Transferring test capability to NETL.

- To develop a SOFC cell/stack test fixture on behalf of Core Technology Program in order to evaluate/validate new materials and fabrication processes under realistic stack conditions.
- To bridge the gap between small-scale tests (e.g., button cells) and SECA industry team stacks.
- To share fixture designs with other SECA participants.

Test fixture: 1st generation design (co-flow or counter-flow)

- 1. Cell (Stark ASC-3) anode-supported YSZ cell 2"x2" with LSM cathode
- 2. LSM-20 (Praxair) and NiO (Baker) contact paste
- 3. Refractory glass seal for PEN/WF seal (950°C/2h)
- 4. Perimeter seal in double seal geometry
- 5. (Mn,Co)-spinel coating for cathode IC plate
- 6. Aluminization for sealing area
- 7. SS441 for IC (0.170") and window frame (0.064") plates

SS441 anode IC plate

SS441 cathode IC plate

Seal system in cell test

Double seal (mica + glass) concept

- 1. Glass will creep/flow under stress and lead to large dimensional change.
- 2. Hybrid mica was proven stable over 28366 hr @ 800°C.
- 3. The creep/flow of glass may transfer compressive load to fracture PEN/WF seal.

Cell #16: refractory glass seal showed good thermal cycle stability

25 deep cycles with constant OCV of ~1.10 V @ 800°C with, $97\%H_2+3\%H_2O$ vs. air RT to 750°C in 3 hr, 750°C/3h, furnace cool to ~RT in18hr

8

Cell test #24: candidate materials validation at constant voltage

- 1st generation V3 design with (Mn,Co)-spinel and aluminization using thick SS441 plates (0.170" and 0.064")
- Standard LSM and NiO/Ni mesh for contact
- Double seal concept of glass and hybrid mica for perimeter seal

Pacific Northwest NATIONAL LABORATORY

Post-test analysis of cell #24, optical

PEN plate fractured during dissembling, indicating strong bonding of Ni contact paste. Glass seal remained whitish indicating good seal and minimum reaction with Interconnect due to aluminization.

Cell #24: sealing glass characterization at glass/YSZ interface

Minimal reaction of refractory glass with YSZ after ~2300hr @800°C near fuel side Needle formation along interface (BaZrO₃, CTE ~10)

ot0/	<i>#1</i>	# 0	# 2	<i>щ Л</i>
at%	# I	#2	#3	#4
0	52.64	48.73	38.18	47.33
Si	0.00	12.06	30.49	5.19
Sr	1.46	13.00	28.43	25.38
Zr	24.09	11.86	0.00	0.00
Ba	18.44	14.35	2.90	5.56
Y	0.00	0.00	0.00	16.53
Ni	3.38	0.00	0.00	0.00

Cell #24: glass/aluminized SS441 interface of fuel side

No (Ba,Sr)-chromate formation at fuel side; however, alumina appeared to be leached into glass matrix.

Cell #24: glass/aluminized SS441 interface of air side

Post-test analysis of cell #24, cathode top surface

0	vicigiit /0
	Sigma
8.57	0.53
27.69	0.6
8.85	0.61
54.89	0.75
	8.57 27.69 8.85 54.89

Pacific Northwest NATIONAL LABORATORY

Cell #24: characterization of Cr near YSZ electrolyte

4				
Element	Weight%	Weight%		
		Sigma		
O K	9.52	0.64		
Mn K	23.83	0.61		
Sr L	7.17	0.64		
Zr L	12.98	0.85		
La L	46.51	0.87		

Element	Weight%	Weight%	
		Sigma	
O K	8.73	0.52	
Mn K	27.88	0.58	
Sr L	9.07	0.58	
Zr L	0.0	0.0	
La L	54.32	0.72	

Cell #24: characterization of Cr near (Mn,Co)spinel coated SS441

LSM-20 contact paste

at%	#1	#2	#3	#4	#5
0	37.96	33.65	30.72	34.11	32.31
Si	0.68	0.00	0.00	0.00	0.00
Ti	0.63	0.50	0.00	0.00	0.00
Cr	56.77	0.87	0.86	0.00	0.00
Mn	1.02	39.35	30.89	32.77	33.73
Fe	2.94	0.00	0.00	0.00	0.00
Со	0.00	25.62	5.06	0.00	0.00
Sr	0.00	0.00	6.46	6.05	6.65
La	0.00	0.00	26.02	27.07	27.32

Cell #24: LSM grain characterization

17

Cell #24: LSM grain boundary characterization

Pacific Northwest NATIONAL LABORATORY

Cell #24: LSM/YSZ grain boundary

Cell #24: Ni characterization

- 1. Cell #24 tested at 800°C for 2325 hr @0.7V with $97\%H_2$, $3\%H_2$ O vs. air
- 2. Previous SS441 oxidation characterization focused on non-welded section

Cell #24: Ni characterization

at%	#1	#2	#3	#4
ΟΚ	36.9	35.6	38.2	46.0
Ti K	1.5	1.8	2.7	0.9
Cr K	61.0	61.2	57.8	18.7
Fe K	0.5	0.6	0.0	0.0
Ni K	0.0	0.9	0.7	2.6
Nb L	0.0	0.0	0.8	17.3
Mn K	0.0	0.0	0.0	14.5

Pacific Northwest

Cell #24: Ni/SS441 interface characterization

800°C/~2325h

Test fixture: 2nd generation design

Pacific Northwest NATIONAL LABORATORY

Cell #33: 2nd G design seal test

No cross-bubbling is consistent with insensitivity of OCV with varying air flow rate, indicating hermetic PEN/WF glass seal.

2nd G design for 3-cells stack test

Conclusions/Accomplishments

- Two stack test vehicles based on 50mm x 50mm cells (40mm x 40mm cathode) have been developed for evaluation/validation of new materials, fabrication processes, design concepts.
- Candidate materials have been validated in a single cell testing for ~2300 h:
- 1. Refractory sealing glass showed hermeticity, minimal reaction with YSZ and aluminized SS441.
- 2. (Mn,Co)-spinel coating was effective in blocking Cr at cathode IC.
- **3.** Aluminization was able to minimize (Ba,Sr)-chromate formation.
- A novel double-seal concept was developed and demonstrated successfully for 25 deep thermal cycles.
- Developing revised fixture design for multiple cells testing.
- Transferring test capability to NETL.

Future work

- Candidate materials evaluation in a single cell test using 2nd G design with new SS441 thin stock materials and high moisture content fuel.
- Implement cathode reinforcement in single cell testing.
- Modify current 2nd G designs for short 3-cells stack evaluations.
- Collaboration with ORNL in evaluation of compliant sealing glass with current design.
- Transfer test fixture to NETL.
- Validating other novel materials and processing (e.g., infiltrated cathode) with current test fixture.

Acknowledgements

- The work summarized in this paper was funded under the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program.
- The authors wish to thank Wayne Surdoval, Briggs White, and Travis Schultz at the National Energy Technology Laboratory (NETL) for helpful discussions regarding the initiation and implementation of this study.
- Initial fixture design provided by LBNL & NETL.
- 441 steel provided by Jim Rakowski at Allegheny Technologies, Inc.
- Additional PNNL contributors: Gary Maupin, Jared Templeton, Kerry Meinhardt, Jim Coleman, Shelley Carlson, Nat Saenz.

