Cell and Stack Development at Versa Power Systems

10th Annual SECA Workshop Pittsburgh, PA July 15, 2009

Brian Borglum

Outline

- Cell
 - > Process Background
 - > Scale-up
 - > **Development Activities**
- Stack
 - > Design Background
 - > Testing Methodology
 - > Scale-up
 - > **Development Activities**
- Conclusions

Cell Manufacturing Process

Cell Microstructure – SEM Image

Cell Scale-Up Development

- Capital equipment for all major process units was added in order to accommodate increased cell size and volume (1 MW annual capacity)
- Cell process development was conducted to evaluate process capability for cells up to 33 x 33 cm²
- 25 x 25 cm² cells with 550 cm² active area were selected for stack development
- More than 2000 cells (25 x 25 cm²) have been fabricated production yields greater than 95% and volumes of 500 kW (annual) have been demonstrated

Cell Scale-Up Testing Summary

Versa Power

Systems

Stainless Steel Current Collectors, Cross-Flow Gas Delivery

25 x 25 cm² – Long Term Testing

33 x 33 cm² – Long Term Testing

Materials Research Activities

- Investigate degradation mechanisms at various operating conditions
- Reduce cell degradation
- Enhance cell performance
- Develop thinner scaled-up cells
- Evaluate metallic alloys and coating technologies

Cell Performance Enhancement

Versa Power

Systems

10 x 10 cm² Cell. Stainless Steel Current Collectors. Cross-Flow Gas Delivery

Cell Endurance Enhancement

Alloy Investigation Using 28 Cell Stack

28 Cell Stack - Parametric Alloy Testing

Stack Development

Stack Development Methodology

1 kW Stack Module

- Ferritic stainless steel sheet metal interconnect
- Cross-flow gas delivery with manifolds integrated into the interconnect
- Compressible ceramic gasket seals
- Cell Active Area = 121 cm²
- Number of Cells = 28
- Successfully implemented in a 4 x 1 kW configuration, with multiple long term tests

Stack Testing: Characterization & Qualification

Stack Testing: Characterization & Qualification

- Defined stack testing and qualification criteria are used to at VPS in order to assess the initial quality of a stack before it is used for other purposes:
 - > Long-term testing which studies voltage degradation over time
 - > Thermal cycle testing
 - > Delivery to external customers

Stack Qualification Minimum Requirements

Description	Condition	Requirement
Open Circuit Voltage	1.65 slpm/cell H ₂ , 1.35 slpm/cell N ₂ , 3% H ₂ O	All cells > 1.01 V
Full Flows	28% Uf, 34% Ua, 0.500 A/cm ²	All cells > 0.8 V
Air Utilization	50% Uf, 60% Ua, 0.388 A/cm ²	All cells > 0.7 V
Fuel Utilization	75% Uf, 50% Ua, 0.388 A/cm²	All cells > 0.7 V
Thermal cycle degradation	Each condition is compared before and after thermal cycle at 0.500 and 0.388 A/cm ²	Cell degradation < 0.006 V
Hold	Stack held at 65% Uf, 35% Ua, 0.388 A/cm ² for 50 h	Cell degradation < 0.010 V

Standard Qualification Testing

GT056019-0087 - 28 Cell Stack 28-Aug-06, 3% H2O

Standard Qualification Testing – TC1

GT056019-0087 - 28 Cell Stack - TC1 31-Aug-06, 3% H2O

Process Capability: 28 x 121 cm² active area cells

Process Capability - 28 Cell Stacks

Based on 102 Stacks (2856 Cells)

The SECA Challenge

Phase I Metric Test

PHASE I Metric Test SECA Coal-Based Systems			
DELIVERABLE POWER RATING	≥10kW		
STEADY STATE TEST	5000 hours		
(Normal Operating Conditions)	△ Power < 4.0% degradation/1000 hours		
TEST SEQUENCE	 Start-up Peak Power Test Steady State Test Shut-down 		
FUEL TYPE	Simulated (subject to DOE concurrence, up to 25% CH ₄ , dry basis)		
MAINTENANCE INTERVALS	Design aspects should not require maintenance at intervals more frequent than annually.		

Stack Scale-up & Design

- VPS has used a modeling-driven design approach for specific challenges in conjunction with PNNL & FCE
- Progressively increased from single cell, 6-cell, 16-cell, 64-cell stack to tower modeling
- Modeling has provided guidance to engineering design and component development using both CFD and FEA
 64-cell
- Validated through component and stack testing

16-cell

Z Y X

Contours of Static Temperature (c)

0.178 psi air inlets

FCE 30kW tower, 61.5%Uf, 18%Ua, 0.3W/cm2

Tower

Versa Power Systems

FLUENT 6.3 (3d, pbns, rngke)

Jan 16, 2008

Stack Scale-up Progression

16-cell Stack – Long Term Testing

Systems

64-cell Stack - Normal Operating Conditions

Normal Operating Conditions – BOL			
Fuel Utilization	61.5%		
Air Utilization	10 to 18%		
Stack Current	200 A (364 mA/cm ²)		
Gross DC Electrical Power	~10,000 W		

64-cell Stack – Long Term Testing

GT057382-0002 64-cell Stack Block Average Cell Voltage and Stack Power

64-cell Stack – Long Term Testing

GT057382-0003 64-cell Stack Block Average Cell Voltage and Stack Power

G0>

the ENERGY lab

Where energy challenges converge and energy solutions emerge

ABOUT NETL

KEY ISSUES & MANDATES

RESEARCH

TECHNOLOGIES

ENERGY ANALYSES

SOLICITATIONS & BUSINESS

EDUCATION

NEWSROOM

CONTACT NETL

Publications News Release

Release Date: March 24, 2009

Fuel Cell Stacks Still Going Strong After 5,000 Hours SECA Fuel Cell Stacks Meet, Surpass DOE Goals

Washington, DC —Two fuel cell stacks developed by FuelCell Energy (FCE) in partnership with Versa Power Systems achieved 5,000 hours of service in February, meeting a goal of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA). The milestone marks a step toward the ultimate SECA objective of providing low-cost solid oxide fuel cell (SOFC) technology for coal-based power plants and other power generation applications.

The FCE/Versa Power fuel cell stacks not only surpassed SECA's requirement of 5,000 hours of service, they also exhibited an overall degradation of only 1.7 percent and 2.6 percent per 1,000 hours—much less than SECA's 2008 (interim) target of 4.0 percent per 1,000 hours. One of the fuel cell stacks continues to run; the data will be used to further assess and refine the current design.

"The team's successful scale-up puts us firmly on the road to incorporating this highly efficient SOFC technology in a wide range of settings, including distributed generation and combined heat and power applications—from tens to hundreds of kilowatts and eventually, megawatts," said Robert Stokes, CEO of Versa Power Systems.

The fuel cells' strong performance has won a project continuation from DOE in which the FCE team is challenged to build a minimum 25-kilowatt SOFC stack that will meet SECA requirements for both performance and manufacturing costs. The new stack is to form the basis for a minimum 250-kilowatt fuel cell power module and a 5-megawatt proof-of-concept system that will operate on coal-derived synthesis gas, a fuel created by reacting coal at high temperatures. Fuel cell scale-up is part of SECA's manufacturing strategy to produce the overall lowest SOFC system cost.

Current Stack Development Initiatives

- Improve stack thermal management (dT reduction) through stack design and operating conditions
- Incorporate advanced cells & components in stacks
- Cost reduction initiatives
- Stack block power increase
 - 64 → 92 cell count

Current Stack Development Initiatives

- 2009 focus is on 92-cell stack
 >18-20 kW stack block
 >Stack Tower Test Platform
- Potential future adjustments in cell count (~100 cells) in late 2009 / early 2010
- Modular tower development focusing on 3 or 4 x 96 cell tower (up to 384 cells)

Stack Development Focus Areas

64-cell Stack – High Power Testing

16-cell Stack Operating Condition Test

Elapsed Time (hours)

Comparison of Stack Thermal Profile: Model vs. Test

- VPS now routinely incorporate thermocouples into stack
- Provides temperature profiles at different stack crosssections over test duration
- Validated CFD models allow virtual stack designs to be evaluated at BOL and EOL conditions

AO

0

т7

о Т8

о_{т9}

 $dT = 82^{\circ}C vs. 84^{\circ}C$

0

T10

o T11 Cell Thermal Map - 61.5F17A 200A, S/C=3, 50% DIR, Furn= 720

AO

Modeled

Versa Power Systems

Phase II Stack Cost Reduction Path

Upcoming Tests

3 x 64-Cell Stack Tower 30 kW

92-Cell Stack Block 18-20 kW

Several significant technical milestones in cell and stack development have been achieved:

- An integrated cell fabrication process has been developed for a new baseline 25 x 25 cm² cell and a production volume of 500 kW annually was demonstrated
- Cells as large as 33 x 33 cm² have been tested
- Cell materials development has been conducted and the results are encouraging
- Stack design & development achieved repeatability allowed the 10 kW stacks to meet the Phase I targets in cost, endurance and performance
- Activities are underway to advance the stack further with respect to these metrics and demonstrate stack tower operation

- SECA Program support provided by the US Department of Energy through the co-operative agreement DE-FC26-04NT41837 (FCE Prime)
- Thanks to Travis Shultz and Wayne Surdoval for their project and technical guidance
- FuelCell Energy team
- Versa Power Systems team

