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Conversion of fuels to H2 rich syngas necessary for the fuel cell
Critical for successful commercialization
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Technical Objective / Challenges

• Desired Thermal Integration with Fuel Cell – Similar 
Temperature of Operation:

Reduces unnecessary heat exchange and can increase system 
ffi i t & l it iefficiency – cost & complexity savings.  

Challenges: Thermal processes too high temperature.  Can be achieved by 
utilizing catalysts to lower reformation temperatures.  Unfortunately, most 
hydrocarbon fuels contain sulfur and complex hydrocarbons that deactivate 
catalyst systems prematurely Commercial catalysts developed mostly forcatalyst systems prematurely.  Commercial catalysts developed mostly for 
natural gas reformation & naptha. 

• Possible Low or Waterless Operation:
Reduces or eliminates the complexity and cost of managing water 
within the system. Some applications cannot consider water addition 
to the process. 

Challenges: The use of water (usually excess) is the principle combatant toChallenges: The use of water (usually excess) is the principle combatant to 
carbon formation for commercial catalysts.  Water however can also increase 
system efficiency by increasing hydrogen concentration via steam reforming 
& heat utilization: Cost vs efficiency trade-off.



Primary Goal

Identify, evaluate and/or develop viable hydrocarbon fuel processing
technologies for high temperature solid oxide fuel cells being supported in
the NETL SECA program through fundamental understanding, research,
and technology demonstration.

Fuel Technology End Use 



Two Project Areas

Oxide-Based Catalyst Systems: Advanced Reforming Concepts:Oxide Based Catalyst Systems:

Apply fundamental understanding 
of fuel reforming & deactivation 
mechanisms into intelligent design 

Advanced Reforming Concepts:

Identify and evaluate alternative 
non-catalytic and/or catalyst 
assisted processes to overcome 

of alternative catalyst systems for 
long-term, stable hydrogen-rich 
synthesis gas production.

deactivation of traditional catalytic 
fuel reforming of higher 
hydrocarbon fuel compounds.



Oxide-Based Catalyst SystemsOxide-Based Catalyst Systems



Project Objectives - Approach

• Gain a fundamental 
understanding of catalyst 
function and mechanism offunction and mechanism of 
deactivation.

• Apply understanding and 
lessons learned to design 
improved performance catalyst 
systems & demonstrate long-
term performance.term performance.



Deactivation Issues – Why?

12

14

Reforming catalyst aging

ue
l)

2

4

6

8

10

 y
ie

ld
 (m

ol
/m

ol
-f

Air
HC Fuel

Recyc.
ExhaustVaporizing S poisoning

0
0 20 40 60 80 100

Time on stream (hr-1)
H

2

Exhaust
S S S S

Vaporizing
Agglomeration

S poisoning

C-deposit

Reformate 
(H2, CO, CH4...)

Catalyst Deactivation

Support Collapse

( 2, , )



Catalyst ProgressionCatalyst Progression

Traditional Inert Supported Ni

Nobel Metal AdditionsNobel Metal Additions

Conductive Supports

Oxide-Based Catalysts

Oxide-Based Catalysts w/conductive supports

Ni quickly deactivates in presence of higher 
hydrocarbons…especially under Pox or low water conditions



Catalyst ProgressionCatalyst Progression

Traditional Inert Supported Ni 

Nobel Metal AdditionsNobel Metal Additions

Conductive Supports

Oxide-Based Catalysts

Oxide-Based Catalysts w/conductive supports

Noble metals such as Rh demonstrated superior carbon and 
sulfur formation/tolerance



Carbon Formation Mechanism
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Catalyst ProgressionCatalyst Progression

Traditional Inert Supported Ni 

Nobel Metal AdditionsNobel Metal Additions

Conductive Supports

Oxide-Based Catalysts

Oxide-Based Catalysts w/conductive supports

What’s the role of the support?



Pt/Alumina. POM. 700C, P=14psig

Effect of support-type on H2 generation

Pt catalysts on non-
conducting supports showed
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Effect of Ionic Conductivity of SupportEffect of Ionic Conductivity of Support 
on Carbon Formation

Partial Oxidation of Methane, 700C
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formation is observed.



I i O 18 T S di L b l d SIsotopic Oxygen18 Tracer Studies – Labeled Supports

P ti l O id ti f M th L b l d Rh/ZDCPartial Oxidation of Methane over Labeled Rh/ZDC
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Isotopic studies corroborate carbon oxidation is initiated by O2
in the support.
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Concentration profiles of 18O prior & post POM 
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Catalyst ProgressionCatalyst Progression

Traditional Inert Supported Ni 

Nobel Metal AdditionsNobel Metal Additions

Conductive Supports

Oxide-Based Catalysts

Oxide-Based Catalysts w/conductive supports

Are oxide-based catalysts beneficial? 



Additional Performance Characteristics

Other important observations:
• Small “nano-sized” catalyst sites exhibit better 
activity and lower overall carbon formation.

•Well-dispersed active reaction sites exhibit betterWell dispersed active reaction sites exhibit better 
tolerance to sulfur and carbon deactivation.

How do we take advantage of these characteristics?



Oxide based Catalyst SystemsOxide-based Catalyst Systems
General Formula

ABO

A-site 
cation
B-site 
cation

ABO

cation

Oxygen 
anion

Doping the lattice of certain oxide-based  compounds with 
catalytic metals results incatalytic metals results in…
•A structured catalytic surface with nano-sized metallic crystallites that 
serves as a template to control metallic crystallite size and dispersion.



Oxide Based Catalyst Performance
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Catalyst ProgressionCatalyst Progression

Traditional Inert Supported Ni 

Nobel Metal AdditionsNobel Metal Additions

Conductive Supports

Oxide-Based Catalysts

Oxide-Based Catalysts w/conductive supportsOxide Based Catalysts w/conductive supports

Is there a benefit?



Oxide Catalyst on O2 Conducting 
Supports

Metal Oxide
C t l tCatalyst

Oxygen Conducting Catalyst Support

Metal oxide-based catalyst on oxygen-conducting supports may perform better



1000 hour Endurance Test 

Long-Term Testing

 

Fully reformed local pump diesel
Equilibrium syngas yields achieved
Survived multiple system upsets
O/C=1, H2O/C=0.5
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Monolithic Reforming Catalyst

Base Support: 
400 cpi 
alumina-
based

Coated Monolith: 
Incorporates 
NETL pyrochlore 
catalyst systembased catalyst system 



T h T f A ti itiTech Transfer Activities
20102009

Catalyst DevelopmentCatalyst Development
Strategy: Develop long-term test data 
for FC fuel reforming to share with 
developers  & catalyst companies to 

t h t f li i d

Long-term 
Powder Data 

(NETL)

CRADA 
Commercial 

Partner (TBD)

Monolithic 
Catalyst Test 

(NETL) 
encourage tech transfer, licensing and 
collaboration.
-Contract with Nextech for coated 
monoliths
-Collaboration w/PCI for microlith catalyst 
evaluation

Patent 
Application

( )

Monolithic 
Catalyst Fab 

( )( )

PCI Microlith 
Evaluationevaluation

-- Discussions w/Sud Cheme

Reactor DemonstrationReactor Demonstration

(Nextech)

PCI R tBi di l FC D l hi / Oth
Strategy – Conduct demo through 
integrated biodiesel fuel cell test @ NETL.  
-Possible evaluation w/Delphi and/or other 
interested developers
-Planned demonstration with PCI

PCI Reactor 
Evaluation

Biodiesel FC 
Demo (NETL)

Delphi / Other 
Evaluation?
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