

Liquid Tin Anode Fuel Cell Direct Coal Power Generation

10th Annual SECA Workshop July 16, Pittsburgh PA

Jeff Bentley – CEO jbentley@celltechpower.com

Thomas Tao- CTO <u>tao@celltechpower.com</u> 131 Flanders Road, Westborough, MA 01581, USA <u>www.celltechpower.com</u>

DOE Contracts DE-NT0004111 DE-ER85006

Liquid Tin Anode Direct Coal Fuel Cell

Background

- How it Works
- Potential Benefits

Direct Coal Power Gen

- System Concept & Analysis
- Contamination Studies
- Cell Scale-up
- Key Risk Areas

Direct Coal Fuel Cell System

- Application of Liquid Tin Anode Fuel Cell to coal power gen
- Scale up of existing Direct JP-8 technology
- No gasifier or oxygen plant required
- Key questions for Phase 1 work:
 - What is projected system performance?
 - Impact of coal contaminants on the LTA cell?
 - Can existing cells be scaled up for utility application?

CellTech Technology: Liquid Tin Anode

Tin is Ideal Anode

- ✓ Low Cost
- ✓ Non-toxic
- ✓ Not harmed by sulfur, carbon
- ✓ Wide industrial application

Chemical and Electrochemical Reactions

Architecture Options (Poster Session)

ElectroChemical Looping

Tin Reactor - Direct Coal Cathode/Electrolyte cell Chemical reactor separate from fuel cell power reactor

In-Situ Gasifier- alternative

Based on Gen 3.1 cell design used for portable power Thin static tin layer Contained by separator

ElectroChemical Looping

Direct Coal Power Using Liquid Tin Anode

Baseline concept: ElectroChemical Looping

TCR processes coal and all recycled syngas. LTA-SOFC immersed in tin pool. Circulating tin provides all species transport to anode. Conventional clean-up.

High-Level PFD of LTASOFC with CCS

250 MW System Performance Estimate

Projected System Performance		
Fuel Cell Stack	Maximum O Content (mass)	0.1%
	Cathode Stoichiometry	1.22
	Stack Temperature	1000°C
	Cell Voltage	0.69 V
	Fuel Cell Gross Power	250 MW
TCR	Anode Recycle	75%
System	Steam Cycle Power	45 MW
	Parasitic Load	13 MW
	System Efficiency (HHV)	63.0%
	Carbon Emissions	29 g/kWh
ower	J. Thijssen, LLC	

System Cost Estimate

Slide 10

More Energy, Fewer Emissions From Coal Power

ElectroChemical Looping is more efficient- makes 45% less CO_2 , pollutants and ash.

Coal power with lower CO₂ than natural gas.

Adding Carbon Capture reduces CO_2 to 3% of today's coal plants.

Contamination Evaluation

Coal Contamination

Tin is unique anode for Direct Coal

- Liquid = no physical structure
- High contact with fuel
- Gravimetric separation of ash

Direct Coal Challenge: Impurities

- Metals such as Vanadium attack YSZ
- Can tin reduce or eliminate impurities?
- Is what remains in tin harmful to cell?

Contaminants of Interest Arsenic (As) Chromium (Cr) Molybdenum (Mo) Manganese (Mn) Niobium (Nb) Selenium (Se) Tantalum (Ta) Tellurium (Te) Tungsten (W) Uranium (U) Vanadium (V)

Contaminant Spiking in Tin

Gen 3.1 Cell spiked

Results

V, Cr, As: 400 ppm Mo, Nb: 200 ppm Constant current Uncontaminated cells: no degradation Spiked cell: 3% decay per 100 hrs Electrolyte morphology chgs

Experimental Evaluation of Contamination Levels

1kW Tubular Design – Similar to Gen 3.1

1 kW Flat Tube Cell Design

Fuel Cells for Real Fuels

Conclusions

- ElectroChemical Looping based on circulating tin anode looks promising
 - 63% efficient
 - Competitive cost
- Coal contamination is major area of concern
- Tin/Coal Reactor acts as a separator and purifier- rejecting contaminants under certain conditons.
- 1 kW cell feasibility study complete

Development Path and Next Steps

- Early Commercialization via small scale
 - Direct JP-8: military power
 - Commercial APU markets

- Parallel development for utility scale
 - Further evaluation of contaminants
 - Longevity testing
 - System integration feasibility study including alternative configurations

Acknowledgements

CellTech Team

Dr. Thomas Tao- PI Mark Koslowske Linda Bateman Mike Slaney

This work was conducted with support from DOE NETL and EPRI

Paul Tortora/Joseph Stoffa, NETL Randy Gemmen, NETL Jan Thijssen, J. Thijssen LLC Dan Rastler, EPRI

