ADVANCES IN FUEL CELL BLOWERS

10th Annual SECA Workshop Pittsburgh, PA

Sponsor:	Department of Energy
Presented by:	Dr. Giri Agrawal R&D Dynamics Corporation

July 16, 2009

Date:

Outline

1) R&D Dynamics Company Overview

2) Foil Bearing Supported Cathode/Anode Recycle Blowers for Large MW Size SOFC Power Plants

3) Foil Bearing Supported Anode Gas Recycle Blower for Small Size SOFC's

4) Low Cost Cathode Air Blower

COMPANY OVERVIEW

OUR BUSINESS

Design, Develop and Production Manufacture Oil-Free, Efficient, and Affordable Foil Bearing Supported High-Speed Turbomachinery

R&D Dynamics, Bloomfield, CT

World Leader in Foil Gas Bearing Technology....

FOIL BEARINGS PROVIDE-

- ✓ Oil-Free Operation
- ✓ High Rotational Shaft Speed
- ✓ Maintenance Free
- ✓ High Reliability
- ✓ High Temperature Capability

Background

- Started in 1990
- * 23,000 sq. ft. space
- 53 employees
- ✤ 50% development programs
- ✤ 50% production programs
- Quality system approved by FAA
- ISO 9001:2000 / AS9100 registered
- Major facility expansion planned for September 2009

Experience

- Fuel Cell Blowers
- Motor driven gas compressors
- Turboalternators
- Turboexpanders for air separation plants
- Hydrogen turboexpander
- Refrigerant centrifugal compressors
- High temperature turbochargers

HIGH-SPEED FOIL BEARING SUPPORTED BLOWERS PROVIDE-

- ✓ High Efficiency
- ✓ Potential for Low Manufacturing Cost
- ✓ Less Material
- ✓ Few Components
- ✓ Part Load Capability
- ✓ Variable Speed

Fuel Cell Blowers

Automotive PEM Reformer Air Blower

Fuel Cell Blower (Cont'd)

Automotive PEM Air Blowers

Fuel Cell Blowers (Cont'd)

Cathode Air Blower for 5 kW SOFC APU

Fuel Cell Blowers (Cont'd)

Cathode Air Blower

Fuel Cell Blower (Cont'd)

SOFC Anode Gas Recycle Blower

Fuel Cell Blowers (Cont'd)

SOFC Anode Gas (850° C) Recycle Blower

New Facilities for R&D Dynamics 75,000 ft² Building Construction

Foil Gas Bearing Supported Cathode/Anode Recycle Blowers for Large MW Size SOFC Power Plants (HT-CRB)

DOE SBIR Phase I Contract No. DE-FG02-08ER85020

Summary of Accomplishments

✤ A high temperature cathode recycle blower has been designed

- High temperature capable (up to 800° C)
- Highly reliable
- Highly energy efficient (>66%)
- Low life cycle cost
- Oil free
- Maintenance free
- Higher design life (>40,000 hrs)
- Lower noise (< 70dBa)
- Easily scalable
- Turn down ration up to 5:1

✤ A 6 inch diameter journal bearing was built and tested

- Tested up to 15,000 rpm
- Characteristic data were acquired

Summary of Accomplishments (cont'd)

- Blower design successful and meets all the requirements
- ✤ Roadmap to dual use as HT-CRB or Anode Recycle Blower was developed
- Feasibility of the program was achieved by design, analysis and breadboard testing

Design of HT-CRB

-Technical Specifications

5 MW
Air
800 °C
15.6 psia
12" of water
20,000 SCFM
2:1
>40,000 hrs
10,000 hours

Design of HT-CRB (Cont'd) -Key Issues

- Reliable Operation & Life of Blower at High Operating Temperature up to 800°C
- Highly Efficient
- Low Life Cycle Cost
- * No Oil or Grease Contamination of Process Air
- Scalability of Design
- Low Maintenance Cost
- Low Noise
- Affordable Cost

Design of HT-CRB (Cont'd) -Technical Summary

> Blower Type Mechanical Speed Bearing Type > Motor Type Controller Type Overall Dimension > Weight > Life

Axial 9,244 rpm Foil Gas Bearings Induction Motor Sensorless Controller 11ft x 8ft x 4ft 6436 lbs >100,000 hrs

Design of HT-CRB (Cont'd)

-Performance

	Inlet Temperature	800 °C
	Outlet Temperature	810.5 °C
	Flow Rate	1,486 lbm/min
	Inlet Pressure	15.6 psia
	Outlet Pressure	16.03 psia
	Pressure Ratio	1.027
	Fan Efficiency	80%
	Bearing Efficiency	96%
	Motor Efficiency	95%
	Controller Efficiency	96%
	Shaft Power	119.6 kW
	Motor Cooling Fan Power	8.3 kW
	Total Input Electric Power	144.9 kW
\succ	Overall Efficiency	66 %

Design of HT-CRB (Cont'd) -Technical Highlights

✤ High temperature capable

- Operates at temperatures up to 800°C

- Completely Oil-free design
 - Supported on foil gas bearings
- Zero Maintenance
 - No contacting parts in the rotating assembly
- Highly Efficient
 - High efficiency fan, motor and sensorless controller
 - Foil gas bearings has low power loss
- Highly Reliable
 - Design life > 100,000 hrs
 - Start stop cycles > 35,000

-Critical Speed Fan Shaft

- > Design speed 9,244 rpm
- > 1st Bending mode 33,677 rpm (300% margin)
- > Fan side rotating assembly stable

Analysis (Cont'd) -Critical Speed Motor Shaft

Undamped Critical Speed Analysis UNDAMPED CRITICAL SPEED PLOT Shaft Mass=260.733 lbm Shaft Length=42.404 Inches C.G.=22.856 inches FBSCRBMOTOR Undampec Critical Speed Analysis £ 60000 X Added Mass & Inertia BEAM BEAM2 Added Mass only ∆ Added Inertia only 60000 40000 10 E 30000 20000 10000 ≻ © Ω 10000 20000 30000 10000 60000 Left End Brg Stiffness (lbf/in) ο 10 20 30 40 50 AXIAL COORDINATE (Inches)

- > Design speed 9,244 rpm
- > 1st Bending mode 51,919 rpm (500% margin)
- > Motor side rotating assembly stable

Analysis (Cont'd)

-Fan Shaft Stress

- Fan rotor maximum stress 36,710 psi
- > Hastealloy @ 1500 °F has 46,000 psi tensile strength
- Shaft stress less than 3000 psi
- > Rotating assembly design safe

Analysis (Cont'd)

-Aerodynamics

- High efficiency blades designed with CFD tools
- > Uniform pressure profiles obtained for high efficiency
- > Inlet and outlet geometry optimized

Analysis (Cont'd) -Fan Performance Map

Aerodynamic design meets design point flow and pressure rise
 Predicted efficiency meets target > 80%

Testing of 6" Bearing -Hardware

> Left picture shows the test rig used for testing the bearing

Right picture shows the 6" bearing manufactured and tested for HT-CRB

Testing of 6" Bearing (Cont'd) -Conclusions

- Test proved feasibility of a new high temperature 6" diameter journal bearing design suitable for HT-CRB application
- Bearing tested up to 15,000 rpm (50 % more than design speed)
- Running torque low, hence better overall blower efficiency
- > An optimum bearing design was identified for this application

Dual Use of HT-CRB -Need for Anode Recycle Blower

In discussion with SECA members, need for high temperature Anode Recycle Blower also exists for large power plants

 HT-CRB has been designed such that it can be modified to use as High Temperature Anode Recycle Blower (HT-ARB)

Phase II Workplan -Technical Objectives

- Continue working with SECA members on blower specifications and requirements
- Perform detailed analysis and prepare detailed drawings for manufacturing
- Manufacture the blowers and conduct performance testing at R&D Dynamics facility
- Test the blowers in an actual fuel cell system of SECA members and collect performance data
- Cost reduce the design for manufacturing of blowers in large quantities for commercialization

Foil Gas Bearing Supported High-Speed Centrifugal Anode Gas Recycle Blower (AGRB)

DOE SBIR Phase II Contract No. DE-FG02-05ER84210

Technical Summary

Blower Type	Centrifugal
Impeller Dia	31.6mm
Mechanical Speed	98,600 rpm
Pressure Rise	1-2.5 KPa (4-10 in of H ₂ O)
> Flow	1.54 g/s
> Size	195mm x 197mm x 204mm
> Volume	0.85 Liter
> Weight	6.5 Kg
> Bearings	Foil Gas Bearings
Motor Type	Permanent Magnet Motor
> Controller	Sensor-less
Operating Temperature	850° C
Input Electric Power	~60 Watts
Overall Efficiency	45.6 %

Highlights

- Testing in 2008 limited maximum recycle gas temperature up to 719 °C.
- Improvements to AGRB design now allows recycle gas temperature operation of up to 850 °C

Accomplishments

Reduced number of parts for cost reduction

➢ Upgraded materials to reach 850⁰C

High speed motor redesigned

Modified 100krpm rotor-shaft assembly for high temperature application

≻Tested in laboratory rig up to 850 °C

R&D Dynamics applied for 2009 R&D 100 Award

Improved AGRB Design

- Simplified volute housing design
- > Merge two thermal choke plates into one
- Diffuser attachment on to the volute housing was changed to avoid warping of vanes
- Merge inner and outer motor housings into one piece housing. Cooling flow channels are provided instead of internal fins to enhance heat transfer
- > Added hermetic connector to the end cover for motor leads
- > Several others changes were made to simplify the design

Improved AGRB

Vertical Section

Total Assembly Weight = 6.51kg

- > The test cycle is based on closed loop system
- ➢ Hot air is circulated via Furnace heated up to 850⁰C
- Flow to the compressor measured through orifice flow meter
- > Back pressure valve is used to back pressure the compressor to generate compressor map
- > All the plumbing connections and pipings are fully insulated for a minimal heat loss
- \succ The blower hot side is enclosed in an insulation box for minimal heat loss

Foil Gas Bearing Supported High Speed Centrifugal Cathode Air Blower (Low Cost Cathode Blower) (LCCB)

DOE SBIR Phase II Contract No. DE-FG02-06ER84616

-Accomplishments

✤ A low cost blower with only 16 number of parts was concepted

- * An efficient low cost cathode air blower was designed
 - Oil free
 - Highly efficient (>61%)
 - Highly reliable
 - Maintenance free
 - Easily scalable
- ✤ A cost model targeting \$100 was developed
- Bread board test was conducted to prove structural strength of plastic impeller concept
- Feasibility of program was achieved

-Specifications

> Working	g Fluid	Air
Pressure	Ratio	1.1 to 1.2
Volume	Flow	1500 slpm
> Turn-Do	own Ratio	5:1
> Overall	Efficiency	>60%
Design I	Life	>40,000 hrs
Mainten	ance Interval	10,000 hrs
Target C	Cost	\$100 @ 50,000 units/yr
Noise Le	evel	<70 dBa
Contami	inants	None, Oil-free

-Technical Summary

- Blower Type
- Mechanical Speed
- > Weight
- > Bearings
- Motor Type
- Controller Type
- Input Electric Power
- Overall Efficiency
- Total Blower Cost
- > Life

R&D Dynamics Corporation Centrifugal 80,500 rpm 1.45 kg (3.2 lbm) Foil Gas Bearings Permanent Magnet Motor Sensorless Controller 769 watt 61.6 % \$105.11 [@ 50,000 units/year] >40,000 hrs

Dynamics Corporation

-Innovative Split Housing Design

-Cost Model

Low Cost Cathode Air Blower Cost Model					
Component	Cost	Material	Menufacturing Processes		
Upper Half Housing	\$4.79	Nylon	Injection mold		
Lower Half Housing	\$4.79	Nylon	Injection mold		
Journal Bearing	\$1.24	inconel	Stemping		
Thrust Geering	\$15.32	Inconel	Stemping, Weiding		
Clearing Sleaves	\$2.03	Akaninam	Rolling		
Zinat	¥1.49	Akaninam	Machining, Annadizing		
Impeller	\$1.32	PPS Plastic	Injection moid		
Thrust Cap	\$2.14	Aluminum	Casting, machining		
Collecter	\$1.58	Nylon	Injection mold		
Shimo, featonera 8. acrewa	#0.00	-	•		
Total Part Cost			\$36.70		
Manufacturing Tooling & Assembly Tool			\$3.35		
Labor Cost	\$1.54				
Sub Total	\$41.59				
Motor	\$8.95				
Controller	\$54.57				
Cathode Air Blower Total Cost	\$105.11				

-Plastic Impeller Testing

> Tested up to 155,000 rpm (850 ft/sec)

- Cathode blower design tip speed 612 ft/sec
- Structurally very strong, withstood gyroscopic loads, needs no balancing

-Ojectives

> Detailed design of low cost cathode air blower

> Develop and test a low cost sensorless controller technology > Manufacture a "hog out" low cost design blower > Assemble and performance test at R&D Dynamics facility > Test in SECA member's actual SOFC system > Optimize design with SECA members feedback > Identify U.S. suppliers for high volume manufacturing

-Accomplishments

> Phase I design was revisited and blower design was optimized

> Detailed design and analysis of blower was completed

> A low cost controller design was developed & tested

> Detailed drawings were prepared

Vendors are being identified for manufacturing of low cost design

-Comparative Motor Study

Type of Motor	Development Time	Efficiency	S/ze	Part Count	Assembly	Rank
Rere Earth Surface PM	1	1	1	5	5	13
Rere Eerth Interior PM	4	2	2	3	3	14
Switch Reluctance	6	4	3	2	2	17
Regular Induction	1	5	6	3	3	18
Solid Rotor Induction	5	6	5	1	1	18
Ceramic Surface PM	3	2	4	5	5	19

Rare earth surface PM motor ranks top (lower cost & highest efficiency)

Single tooth winding identified cost effective for stator manufacturing

-Comparative Shaft Study

Parameter	304 Shaft	Aluminum Shaft	Zinc-Aluminum Shaft	
Critical Speed	265,000 rpm	224,000 rpm	176,000 rpm	
Cost	\$1.02 / ft^3	\$0.75 / ft^3	\$0.15 / ft^3	
Electrical Conductivity	15% of copper	59% of copper	28% of copper	
Thermal Conductivity	16	113	113	
Density	0.29	0.1	0.25	
Yield Strength	29,700 psi	23,900 psi	27,459 psi	
Die Cast Tolerance	NA	+/-0.002	+/-0.0015	
Die Castable Thickness	NA	0.06"	0.03"	

> Die casting most suitable to produce low cost shaft

> Al or Zn-Al casting will meet the needs for low cost cathode air blower

-Shaft Critical Speed

Shaft 1st bending mode speed (>200,000) 2 times higher than design speed (80,500rpm)

> Shaft assembly stable

- > All components max operating temperature 50% below melting point.
- > Thermal growth very meager
- Materials properly chosen

-Shaft Heat Transfer

2007C3__energ_cont_energiant-Thermal Analysis = Thermal Files Step: Unio : Felenciust

- > Thermal growth very meager
- Windage, motor loss & bearing loss properly cooled
- Motor rotor & impeller press fit fail proof

- Max Von Misses stress 50 % lower than material strength
- Shaft assembly very stable at design speed

-Aerodynamic Design

> Low cost injection moldable blades designed

> High efficiency obtained with low solidity diffuser vanes

Phase II - Controller Cost Reduction

Left picture shows low cost DC-DC converter developed for the controller
 Right picture shows commercial IGBT identified for low cost design

-Controller Testing

Left picture shows low cost controller being tested using a test blower
 Right picture shows uniform controller output current measured during testing

Overall Concluding Remarks

Conclusions

- Component and SECA member system testing have shown that foil bearing supported blowers will meet...
 - High efficiency
 - Low volume/weight
 - High reliability
 - Oil free operation
 - Maintenance free operation

Conclusions (cont'd)

✓ DFMA analysis have shown that production cost target of SECA members will be met

 Pricing of limited production units will require partnership among...

R&D Dynamics
SECA Members
Department of Energy

Acknowledgement

R&D Dynamics would like to thank DOE and SECA members for their support

