Degradation & Plant Availability

- Managing component degradation is critical to power plant availability
- Achieving this cost-effectively requires a combination of:
 - Improved component design to minimize degradation
 - Preventative maintenance to improve performance predictability
 - Spare capacity to provide back-up during routine maintenance or in case of failure
- Examples of different approaches:
 - Gas turbines run for 3 -5 yrs without minimal maintenance with <7% degradation
 - Coal pulverizers are rebuilt every 4 12 weeks, necessitating 1/6 spare capacity
 - Most IGCC plants carry spare gasifiers to meet availability requirements

SOFC Degradation

- Degradation has been seen as a major barrier to SOFC commercialization
- SECA has been key in reducing degradation:
 - Degradation (planar stacks) reduced by factor 10¹
 - But most data on stack still limited to constant current
 - Impact of operating conditions not yet well-understood
- Degradation targets are based on rule of thumb:
 - Similar approach as used for gas turbine ____
 - 5 years w/ <10% degradation (or $\sim 0.2\%/1,000$ hrs)
 - Constant current operation implied in most discussion
 - Maybe in-appropriate with low-cost stacks
 - System impacts of degradation are not considered

Objectives

We carried out an analysis asking:

- How can we best manage degradation?
 - With stack cost in the 100 200 kW range Considering system implications
- What is an appropriate degradation target?
- What additional knowledge do we need about degradation?

Approach

- Evaluate impact of various operating strategies:
- Constant current, constant voltage, constant heat output
- Replacement rates
- Determine overcapacity needed for >90% availability
- Use baseline IGFC cost model
 - State-of-the-art planar stacks, 2000 cm² cells
 - Mature production (>200 MW/yr)

System cost structure
SOFC Stack
Stack replacement cost Balance of SOFC Subsystem
Total SOFC Subsystem Cost

Balance of Plant

Total Plant Cost

ic Stack	100	\$/kW
ance of	22	\$/kW
:k Infra:	50	\$/kW
al	172	\$/kW
	100	\$/kW
wers	60	\$/kW
uperato	100	\$/kW
/erElec	150	\$/kW
с	75	\$/kW
al	385	\$/kW
	699	\$/kW
	1101	\$/kW

1800 \$/kW

n Rate hrs)	0.2 -	
Degradation lcm ² /1,000 h	0.15 -	
-C	0.1 -	
Stack (m ⁽	0.05 -	
	0	

0.25

SOFC Stack Operating Strategies Johannes H. J. S. Thijssen J. Thijssen, LLC, Redmond, WA

System Impact

- 10% degradation under typical^a constant-current mode operation leads to: - Immediate 10% reduction in stack output (V x I)
- 80% increased in stack cooling air flowrate AND >200% increase in pressure drop result in >5x parasitic power for air flow (typically several percent of stack output)^b - Increase in polarization likely accelerates degradation further
- To maintain >90% availability, these factors have to be off-set by significant overdesign of all system components, especially cathode air handling
- System efficiency degrades rapidly Similar degradation^c under constant voltage operation:
- Requires significant reduction in stack current to compensate increased polarization^d
- System heat balance and opeartion is not affected (except for heat losses)
- To maintain >90% availability requires only addition of stack capacity:
 - Pick stack maintenance interval (e.g. 1 year)

 - Determine excess capacity with degradation rate to achieve >90% availability Optimize stack life to minimize cost
- System efficiency is only marginally affected by degradation

Conclusion

- strategy for SOFC
- With 0.5%/1,000 hrs degradation rates, stack management cost of below 1 e/kWh appear feasible, with 1.5%/1,000 hrs cost would be over 2e/kWh:
- 1.5%/1,000 hrs has been demonstrated in complete systems
- In certain short stack tests 0.5%/1,000 hrs has been demonstrated
- Available constant-current test data likely represent worst-case
- Given other compelling benefits of IGFC over conventional technology, 0.5%/1,000 hrs would likely be acceptable for initial commercial systems
- Long-term, degradation below 0.25%/1,000 hrs would be desirable, which would benefit early plants as their stacks are replaced
- To achieve costs below 0.5 e/kWh, degradation rates must be below 0.25%/1,000 hrs
- More degradation data under constant=current operation is needed:
- Basic operating data for stacks under constant current
- Short stack data on impact of operating conditions (temperature, polarization, gas composition)

Acknowledgements

- Many thanks to Wayne Surdoval for guidance & support • Work performed under RDS, LLC sub-contract 41817M2846

References & Notes

- 1 Data from SECA meetings since 2002
- a Assuming operating at 0.8V cell voltage, 0.9 V Nernst potential b Benefit of increased airflow on Nernst potential is negligible
- c In terms of m Ω cm²/1,000 hrs
- d As we don't have public data under constant voltage operation, we assume that for modest degradation the rate of ASR increase is the same as under constant current
- e Assumes atmospheric stacks, initial pressure drop 100 Pa

• Constant-voltage operation appears to provide the most attractive operating