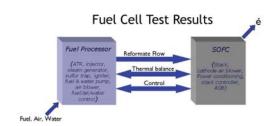
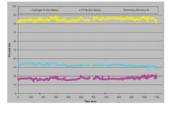
WATER-NEUTRAL DIESEL REFORMING

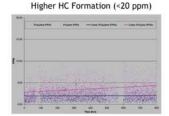
Subir Roychoudhury

Ambient Temperature Air, Water, Fuel In SOFC Quality Reformate Out

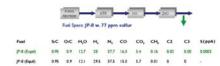


Fuel sulfur converted to H_2S in ATR and sorbed in sulfur trap


Room-temp start-up; No preheat required Off-the-shelf pumps & blowers being implemented Automated "push button" start, load changes & shutdown Control logic/algorithm implemented via PC-based interface Readily integrated w/SOFC, PEM, H₂ generation systems



Operated w/ 1KW_e SOFC stack 6 thermal cycles; 1100kW-hr produced DC Gross efficiency of 34% achieved Maximum power of 1.5kW_e obtained


Successful startup/operation/shutdown demonstrated 1102 hours total testing- 370hrs longest steady-state period Successfully tested manual load-following On post inspection, no carbon or deleterious effects on stack observed

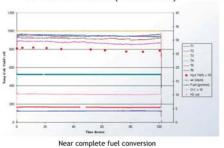
ATR Durability (1000 hours)

Reformate Composition vs. Equilibrium

Microlith® Manufacturing

Catalyst-coated metal mesh (Microlith®) made to PCI specifications in continuous production line

Application-specific formulations developed at PCI and applied by a proprietary process



Effect of Fuel Sulfur on Performance

1000 hour durability w/ 400 ppm S

Complete fuel conversion Stable, LHV-based efficiency,

CPOX of Diesel (waterless)

Anode Gas Recycle Data (ex. 50% recycle)

High H2 yield

	From experiment	From ASPEN analysis
AGR-air mixture T (°C)	200°C	350°C
External O/C ratio	1.45	1.30
External S/C ratio	0.72	0.72
Reactor T (°C)	920°C	911°C (adiabatic)
Products	Vol. % (dry basis)	Vol. % (dry basis)
H ₂	11.4	11.6
N ₂	65.4	62.8
CH4	0.04	Trace
со	9.5	14.4
CO ₂	13.7	11.3

Shows feasibility of AGR as water source Various O/C, S/C ratios examined

Scale-up: Shipboard Fuel Processors

50 - 250 kWe Systems under Development

Precision Combustion, Inc. Clean Power Solutions for the 21st Century

www.precision-combustion.com