

Ceramic/Metallic Heat Exchanger Development

10th Annual SECA Workshop

Pittsburgh, PA July 12, 2009

Acumentrics Corp.
20 Southwest Park
Westwood, MA

Uninterruptible Power Supplies for Harsh Environments

Industrial-UPS®Commercial

Rugged-UPS® Military

Tubular SOFC Generators

- Micro CHP
- Cathodic Protection
- Military Power

Ceramic/Metallic Heat Exchanger Development

Project Objective

 Combine ceramic and metallic heat exchanger cores to produce a low cost, high effectiveness, recuperator for cathode air preheating

Recuperator Specification

- Exhaust Inlet Temperature 850 950 C
- Air Outlet Temperature 725 800 C
- Effectiveness >85%
- Total Pressure Drop 1250 Pa
- Equal Air and Exhaust Flowrates
- Air Flow 150 lpm per kWe

Stack/Recuperator Layout

Recuperator Configuration

Ceramic Cores Manufactured by Blasch Precision Ceramics

	Passage Width (mm)	Heat Transfer Area (cm^2)
Core 1	7.0	810
Core 2	3.3	1425

Hybrid Cross/Counter Flow Recuperator

Recuperator Performance

Air Flow	Ovl Effectiveness	
slpm	Metallic (Folded Sheet)	Hybrid (Core #1)
100	0.71	0.79
200	0.71	0.82
300	0.70	0.78

Ceramic Core Performance Testing

Ceramic Monolith Performance

Metallic Sections Tested

Fin Core

Shell & Tube

Folded Sheet

Foil

Integrated Stack/Recuperator Test Stand

Accomplishments

- Completed the detailed design of a cross flow ceramic / counter flow metallic hybrid recuperator
- Developed heat exchanger models
- Designed and manufactured molds to produce ceramic heat transfer cores
- Manufactured prototype cores
- Manufactured prototype 1 kW hybrid recuperators
- Designed and manufactured various metallic heat exchanger cores
- Conducted performance testing of hybrid recuperators utilizing two different ceramic cores and two different metallic section configurations
- Characterized heat transfer performance of ceramic cores
- Assembled recuperator and integrated stack/recuperator test stands

Future Activities

- Conduct integrated fuel cell stack testing with the hybrid recuperator.
- Evaluate ceramic component manufacturing techniques to optimize the ceramic core heat transfer rates and increase the specific surface area.
- Evaluate scale-up of the heat exchanger geometry to larger generator sizes.
- Evaluate a foil design counter flow metallic section which has the potential to further reduce the recuperator cost.
- Evaluate recuperator designs which are compatible with a "replaceable" fuel cell bundle stack configuration

Acknowledgements

- This work performed under contract DE-FG02-06ER84590
- Thanks to Maria Reidpath and Robin Ames at DOE NETL
- Thanks to the staff at Blasch Precision Ceramics