X-ray, AFM, and Electrochemical Studies of Cation Segregation in Thin-Film Perovskite Cathode materials for solid oxide fuel cells K.-C. Chang¹, B. Yildiz², B. Ingram³, D. Hennessy¹, K. Balasubramaniam⁴, P. Salvador⁴, and H. You¹ ¹Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 ²Department of Nuclear Science and Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA 02139 ³Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 ⁴Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Experimental Setup

Grazing Incidence X-rays

Surface sensitivity with X-rays

LSM and LSC PLDfilms/YSZ

operates as a oxygen pump sample with electrical

We measure X-ray absorption spectroscopy and fluorescence at different incident angles for surface sensitivity

Both films grow in the (110) orientation on YSZ(111) and show 6 domains associated with this epitaxy

Cation Segregation

Phase stability

 10^{-3}

XANES: Oxidation States

Fluorescence signals sensitively vary across the samples indicating electrochemistry affects the cation profile.

AFM Measurements

LSC/YSZ(111) forms a new tetragonal phase in operating condition: also seen in impedance measurements. Thin GdC layers do not stop decomposition of LSC LSC 60nm/GdC 60nm/YSZ(001

— as received

0.6 0.7

after HT CC

Summary

Developed *in situ* synchrotron X-ray setup to study cathodes in air under half-cell (oxygen pump) or full cell (with fuels such as H_2 or CO) operating conditions.

ced

- □ Found that Sr segregates to the surface of LSM and LSC films, forms Sr-rich nanoparticles at room temperature, and reincorporates into the films when heated to 700°C.
- Segregation is found dependent on the distance from the contact wires, suggesting that the