Coal Conversion in a Fluidized Bed Direct Carbon Fuel Cell

^{1,2} Turaut M. Gür

¹ Direct Carbon Technologies, LLC, Palo Alto, CA 94301 ² Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305

Direct Carbon Technologies (DCT) is developing its proprietary fluidized bed direct carbon fuel cell (FB-DCFC) technology to commercialization.

DCT has already demonstrated efficient conversion of coal, carbon and biomass into electricity in its proprietary FB-DCFC [1-4].

"Direct" implies to conversion in a single process chamber.

FB-DCFC's Advantages

- Flexibility to employ a wide range of solid fuels
- Consumes no water
- No nitrogen enters process stream
- Produces capture-ready CO₂
- High conversion efficiency
- Less coal or biomass per unit of electricity generated
- Produces less CO₂ per unit of electricity generated
- No or minimal NO_x emissions

Operating Principle of FB-DCFC (Current Understanding)

Boudouard reaction in coal bed

 $C_{(s)} + CO_{2(q)} = 2CO_{(q)}$

On SOFC anode

 $2CO_{(g)} + 2O_{o}^{x}{}_{(YSZ)} = 2CO_{2(g)} + 2V_{o}^{"}{}_{(YSZ)} + 4e'_{(electrode)}$

Net Bed-side

 $C + 2O_{o}^{x}(YSZ) = CO_{2(q)} + 2V_{o}^{"}(YSZ) + 4e'_{(electrode)}$

On SOFC Cathode

 $O_{2(g)} + 2V_{o'(YSZ)} + 4e'_{(electrode)} = 2O_{o'(YSZ)}$

OVERALL Cell Reaction

 $C_{(s)} + O_{2(q)} = CO_{2(q)}$

Solid fuels converted in FB-DCFC

