FUEL CELLS IN LOCOMOTIVE APPLICATIONS

Potential Railroad Energy Saving
- Railroad large energy user
 - Approximately 4 billion gallons of diesel annually
- In 2005, the cost of fuel was approximately twice annual profits
- Fuel cell in locomotive
 - Replace conventional diesel engines
 - Implementation depends on application

Focus on Solid Oxide Fuel Cell (SOFC)
- Compared to proton exchange membrane (PEM)
 - More flexible fuel choices
 - Higher temperature better for application
 - No expensive metal catalyst
 - Lower activation losses
 - Higher current efficiencies
- Compared to molten carbonate fuel cell (MCFC)
 - Solid electrolyte: compact
 - Higher operating current and power density

Electrical Power Distribution
- Fuel Cell
- DC/DC Converter
- Motor Drive
- Traction Motor
- Battery (ASU)
- Bi-directional Converter

Locomotive Application 1 – Switcher
- High dynamic power swings
- Low average power: 50 Hp

Fuel Choice -- Bio-Diesel
- Advantages
 - Higher energy density than hydrogen
 - Renewable
 - Minimal safety impact
- Disadvantage
 - Soy diesel: high phosphorous content
 - Needs cleanup
 - Gasification required

Gasification Analysis
- Concern about reduction of CO

Balancing Energy and Power Needs

Locomotive Application 2 – Pusher
- Aid up hill
- Short range
- High power for long periods

Locomotive Application 3 – Long Haul
- Long range
- High power for extended periods
- Few starts and stops

Continuing Work
- Optimizing between fuel cell and ASU
- Coordinating power flow
 - Between fuel cell and ASU (switcher and pusher)
 - Between multiple fuel cells (pusher and long haul)
- Developing fuel cell models
 - Accurate analysis of system
 - Better understanding of thermodynamic balance of plant

Summary Table

Liping Guo, Pradip Majumdar, David Schroeder, Donald Zinger
College of Engineering and Engineering Technology
Northern Illinois University