Proton Conductor Based Solid Oxide Fuel Cells

S. Elangovan, J. Hartvigsen, F. Zhao, D. Ramirez, B. Heck, and D. Larsen

10th Annual SECA Workshop

Pittsburgh, PA 14 July 2009 Supported by DOE SBIR Grant: DE-FG02-06ER84595

Outline

Thermodynamic Analysis Shows Higher Efficiency for Proton Cells compared to Oxygen Cells

- Stability addressed by the use of composite electrolyte
- Anode supported composite electrolyte cell shows good performance
- Stability in high CO₂ containing fuel demonstrated

Thermodynamic Analysis

Cell Reversible Potential is

$$E = \frac{-\Delta G}{nF}$$

Gibbs Energy For $H_2 + 1/2O_2 \rightarrow H_2O$

$$\Delta G = \Delta G^{\circ}(T) + RT \ln \left(\frac{a_{h2o}}{a_{h2}\sqrt{a_{o2}}}\right)$$

Gibbs Energy For a Hydrogen Concentration Cell

$$\Delta G = RT \ln \left(\frac{a_{h2} - cathode}{a_{h2} - anode} \right)$$

= Cathode Hydrogen Activity $K_a = \frac{a_{h2o}}{a_{h2} \sqrt{a_{o2}}} \Big|_{cathode}$
= Substitution Gives for a proton cell:

$$\Delta G = -RT \ln (K_a) + RT \ln \left(\frac{a_{h2o} - cathode}{a_{h2} - anode} \sqrt{a_{o2} - cathode} \right)$$

Driving Force Comparison

High driving force even at high fuel utilization

CERAMATEC

BaCeO₃ Proton Conductivity

- Highest conductivity range from 0.01 to 0.016 in 700° to 800°C range
- Alf the oxygen ion conductivity of 8YSZ

Ionic Transference Number

Comparison of Driving Force

0.5 mm thick pellet of BCY (800°C)

8

Observations

- OCV for P-SOFC is lower at 800°C, but approaches O-SOFC at lower temp.
- Even with lower OCV, the Nernst potential crosses over at utilization of >10%
- Absolute value of proton conductivity in BaCeO₃ is lower than the oxygen conductivity in YSZ
 - Generally electrode losses dominate cell performance

Instability of Perovskite

Stability of BaCeO₃ in hydrocarbon based fuel is a major known issue

 $BaCeO_3 + CO_2 = BaCO_3 + CeO_2$

 $BaCeO_3 + H_2O = Ba(OH)_2 + CeO_2$

Reaction Product: CeO₂

- Traditional use for its high oxygen ion conductivity
- Challenging as solid oxide fuel cell electrolyte due to mixed conduction in fuel atmosphere

Composite of BCY + YDC ??

Enhanced Thermochemical Stability

Ceramic Composite over BCY

Thermogravimetric analysis in Air + 5% CO2

BCY + YDC (crushed sintered disk)

12

Composite Stability in Syngas

Stability in CO-CO₂-H₂-H₂O mixture

BaCeO₃ vs Composite Stability

Exposure to syngas at 900°C

Exposure to Syngas at 700°C

As low as 10 vol% Ceria shows improvement in stability

Anode supported thin film cell

Cell before testing

Dense thin film (~15 µm) BCY+YDC composite electrolyte

Anode: 50 wt% NiO and 50 wt% (BCY+YDC)

Cell after testing

Electrolyte surface

Anode supported P-SOFC

Anode supported P-SOFC

Stability in Syngas

 Fuel: Simulated high utilization (90%CO₂ balance humidified H₂)
 CERAMATEC

Conclusions

Proton SOFC shows high efficiency possibility

- Practical compositions requires operating temperatures of 700°C or below to realize high t_H
- Relatively lower proton conductivity requires thin, supported electrolyte cells
- Proton Cells Can Effectively Use CO Via the Water Gas Shift Reaction
- Chemical stability in syngas can be improved by the composite approach

DOE SBIR Grant: DE-FG02-06ER84595

DOE PM

Dr. Mani Manivannan Dr. Joseph Stoffa

