

## Solid Oxide Fuel Cells in UUV



# **Unmanned Undersea Vehicle) Applications**

### A. Alan Burke, Ph.D. Louis G. Carreiro, Ph.D.

NUWCDIVNPT INVESTIGATORS

### INTRODUCTION

- cells for the propulsion of Unmanned Undersea Vehicles (UUVs). The U.S. Navy is currently investigating SECA solid oxide fuel
- fuels in an air-independent environment. Key goal is to operate a SOFC power source on logistic (military)
- A UUV power source will consist of a SOFC stack(s), fuel processor, carbon dioxide scrubber, balance of plant components and fuel / oxidant storage.



- battery technology: SOFCs offer several distinct advantages over rechargeable
- potential for achieving specific energy greater than 300 Wh/kg.
   capable of utilizing energy-dense fuel (extended mission time)
   "gas and go"-allowing a UUV to be re-faunched at short notice.
- self-sustaining while supplying heat to reforming processes.



S-8 Efficiency (%), S-8 Utilization (%)

4 5 6

30 20 10

ë

20

8

Current Density (mA/cm²) S-8 Utilization

100 90 80 70

oop Operation

Experimental Set-up at NUWCDIVNPT

### **APPROACH**

 Reformate studies conducted with major system components Isolate effects of pure oxygen, using only hydrogen/nitrogen mixtures as fuel Test SECA SOFC Stacks under pure oxygen and reformate conditions



### Evaluate SOFC stacks and balance of plant components for UUV application

U.S. DOE-R&D Dynamics sponsored SBIR



Phase II prototype

matches 21'

goals UUV design

### TDA Research CO<sub>2</sub> Sorbent



Over 50% mass gain demonstrated carbonate at high temperature. which is chemically converted to calcium via an active sorbent, calcium oxide, Removes CO<sub>2</sub> from exhaust gas of SOFC

CaO + CO<sub>2</sub> → CaCO<sub>3</sub> + HEAT (178 kJ/mol)

### RESULTS

Under CO2 Gas

Terry and re 22.0 30

3

200

280

ŝ

Time, mir

- Up to 10% Power gain seen by using pure O<sub>2</sub> vs. Air tested at NUWCDIVNPT's facility Delphi Corporation and Versa Power Systems have been
- -30-Cell Delphi Stack integrated with
- 1) InnovaTek's Steam Reformer
- 2) TDA Research's CO<sub>2</sub> Sorbent
- Benchmarks achieved in first Demo: R&D Dynamics' High Temperature Blower
- → 90% Oxygen Utilization -> 75% S-8 Utilization
- -> 50% Efficiency (P 30FC / S-8 LHV) **↓180**
- Degradation Rate: 2-3% / 100 hour mission

operation). study (several of-concept in initial proofsimultaneously hours of All achieved









### Data acquired in conjunction with the IV-plot shown in figure to the right; above 200 mA/cm² there is fully closed-loop operation and above 350 mA/cm² there is stoichiometric oxygen control cylinder gas to closed-loop, anode recycle operation. Power exceeded 1 kilowatt.

### CONCLUSIONS

SOFC technology has the potential to greatly increase UUV mission time compared with current rechargeable battery technology.

800

Power (W)

900

systems NUWCDIVNPT is collaborating with DOE & industry to evaluate technologies for undersea power

Main challenges for UUV application:

0

200 8 600

- Oxygen Storage
   Sorbent Regeneration
- Start-up Thermal Management