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Methodology Fe-Cr-O at 1000oC

Fe-Cr-O at 800oC

Conclusions

Reproduce experimental 
diagrams and thermo-
dynamic properties of the 
binaries and ternaries

More importantly – extra-
polate the Gibbs energies of 
lower order  phases to those 
of higher order  phases

Obtain self-consistent Gibbs energy functions for all 
the phases in the system (thermodynamic description)

Experimental thermodynamic data and “first principles”
calculated values at 0K and phase equilibrium data

Optimization of model parameters

Appropriate model selection for each phase

X-ray diffraction of 
surface (oxide)

Sample preparation
Vacuum impregnated, 

sectioned, polished

Characterization
SEM/EDS

Oxide volume fraction

Kinetic evaluation

Weigh before & after oxidation

Oxidation study of interconnect materials
GE13L, Stainless steel 441

Furnace held at temperature
Testing time: 5min, 30min, 6h, 25h, 100h
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•High temperature testing (such as those at 1000 oC) can lead to changes in phase equilibria as 
well as the oxidation kinetics of stainless steels.

•Thermodynamic modeling indicates different phase equilibria exist for 800 and 1000 oC. For 
Fe-20 Cr alloys, the alloy side (low PO2) is anticipated to form Cr2O3. While on the oxygen side 
(high PO2), it is likely that the oxide scale will be Fe2O3.  In between these two layers, several 
oxides may form, i.e. Fe3O4, FeO, FeCr2O4. 

•The overall PO2 stability level at 1000 oC is greater than that of 800 oC. This results are in line 
with the oxidation experimental results.
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[Wt Change/Area]2 = 0.0005.time+0.0015; 
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•Very thin oxide observed on both GE13L and SS441
•Parabolic constants are very low indicating slow kinetics
•Chromium oxide indicated in micrograph is a mixture of (Cr,Fe)2O3 and (Cr,Fe)3O4
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