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Roadmap for dense granular flow
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Fundamental aspects of stress and flow fields in dense A

particulate systems.

Definition of material properties on relevant scales, along with —— B

efficient ways to represent properties in models and establish

standards for material property measurements.

Given the practical need for continuum modeling capability,
identify the inherent limitations and how to proceed forward, e.g., C

hybrid models that connect with finer scale models (DNS, DEM,
finite element, stochastic, etc.) for finer resolution.

Size-scaling and process control (particle / unit-op / processing D -
system) is critical to industrial applications. | |
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Connection to roadmap
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4.  Size-scaling and process control (particle / unit-op /
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Qutline

@ The continuum model development

@ |ts predictive capabilities demonstrated by
applications to unsteady shear flows

Q@ Future work
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Dissipative plasticity model’

D:D

Oij = POij —pﬁ\/

* D.G. Schaeffer. ]. Differ. Equ. 66, 19, 1987 ; ).D. Goddard. |FM 568, 1,2006 5/19
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Dissipative plasticity model’
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Dissipative plasticity model’
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@ Stress is related to plastic deformation with rate independence

9 Pressure and stress ratio are modeled as functions of

microstructural variables: coordination number and fabric
tensor.
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Dissipative plasticity model’

D:D

Oij = POij —1”7\/

@ Stress is related to plastic deformation with rate independence

9 Pressure and stress ratio are modeled as functions of
microstructural variables: coordination number and fabric
tensor.

@ Stress is evolved through microstructural evolution.

* D.G. Schaeffer. ]. Differ. Equ. 66, 19, 1987 ; ).D. Goddard. |FM 568, 1,2006 5/19



Model construction

@ Simulate particle dynamics of homogeneous
assemblies under isotropic compression or simple
shear using discrete element method (DEM)

@ Extract stress and structural information by
averaging; seek constitutive relations.

6/19



Computational system

@ 3D periodic domain without gravity
@ 2000 mono-dispersed spherical particles

@ Restitution coefficient: 0.7

@ Inter-particle friction coefficient: 0.1-1

¢ Simulate using the LAMMPS code’

N
1 1
Stress 0= % Z m;C;C; + Z §I'z‘sz'j
i | jrji )

S.]. Plimpton.] Comp Phys, 117, 1-19 (1995) http://lammps.sandia.gov 71719
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Computational system

@ 3D periodic domain without gravity
@ 2000 mono-dispersed spherical particles

@ Restitution coefficient: 0.7

@ Inter-particle friction coefficient: 0.1-1

¢ Simulate using the LAMMPS code’

_ Small _

Stress
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Characterize microstructure

Coordination number: average number of contacting neighbors

cp>2
Zp 1 x
No

Fabric tensor: average of tensor product of unit contact normals

Exclude particles with zero or one contact

Lo =

N cp=>2

1
A=Y mpenpe— b co

n=1 c=1

A, magnitude indicates the microstructure anisotropy strength; sign
indicates the anisotropy direction
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Pressure equation
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Pressure equation
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Pressure equation

0.035

> Isotropic compression
0.03f Simple shear

0.025f

0.02f

pd/k

0.015F

0.01f

0.005} x‘*:: (= 0.5

Isotropic pressure
a = 0.0052, b = 2.48 9/19



Pressure equation

0.035

> Isotropic compression
0.03f Simple shear

0.025f

0.02f

pd/k
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Excess pressure caused by

structural anisotropy
as = 1.1, ag =12 919
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... long amplitude cyclic shear |
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@ Both steady and unsteady shear ratios following similar
variation against anisotropy

@ Modeled as function of fabric tensor
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Shear stress ratio
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Shear stress ratio
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A:D (A : D)?

n = 61+ B2 D:D—l_ﬁg DD
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Evolution equations

Coordination number

Z=a1A:D+ayVD:D+a3VD:DZ + astr(D) Z = <
Fabric tensor

O

A=cS+ca(vVD:D)A+c3(A:D)A

Jaumann derivative A = CZ:\ FA-W-W-A

@ Functions of A and D; satisfying frame indifference.

@ QSatisfy stability requirement.

@ material constants, ¢ and a, can be calibrated using DEM data.

Stickel, J. et al. A constitutive model for microstructure and total stress in particulate suspensions.
Journal of Rheology, 50(4):379—41 3, 2006. 11/19
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Coordination number

Scaled pressure

stress ratio

Shear component of fabric
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@ Small strain amplitude (YA = 0.9) cyclic shear under constant
pressure condition (@) =0.60 p = 0.5

¢ Lead to compaction as observed in experiments, e.g., Okada, 1992

Okada, N., Energy dissipation in inelastic flow of cohesionless granular media. PhD thesis, University of California, San Diego 14/19



Reynolds’ dilatancy
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@ Shear an initially isotropic assembly under constant
pressure

@ Model predicts correct dilation dynamics and steady
state without fitting the dynamic data. 5/19



Friction dependence: pressure

pd/k

C. Song, P. Wang, and H. A. Makse.A phase diagram for jammed matter. Nature, 453(7195):629-632, 2008.
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@ Pressure depends on friction.
@ Transition point to quasi-static
regime, Z., is related to jamming
transition.
16/19

Our simple shear data

Song et al. Jamming transition
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Friction dependence: pressure

Our simple shear data

Song et al. Jamming transition
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Transition point to quasi-static

regime, Z., is related to jamming
transition.

a, b, as, g depend on friction

C. Song, P. Wang, and H. A. Makse.A phase diagram for jammed matter. Nature, 453(7195):629-632, 2008. 16/19



Friction dependence: stress ratio
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@ Simple shear data
averaged over volume
fractions

@ Shear stress ratios
increase maghnitude as
particle friction increases.
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Friction dependence: stress ratio

0.44

0.42r

0.281

0.26
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@ Simple shear data
averaged over volume
fractions

@ Shear stress ratios
increase maghnitude as
particle friction increases.

n = 01+ P2

A:D

(A : D)?

VD : D

b1, P2, B3 depend on friction

BT
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Summary: model recapitulation

S, -
DD

Oi5 = p5z‘j — P / Stress constitutive equation

18/19



Summary: model recapitulation

q. .
05 = p(Sij — P Vi DZ. 5 Stress constitutive equation

p=a(Z—Z)" 4+ as(A: A (Z — Z.)*
A:D A :D)?
n:ﬁl+ﬁ2\/D°D | 53([).[))
¢ Closure relations linked to microstructure.
¢ Material constants depend on particle friction and elasticity.
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Summary: model recapitulation

q. .
05 = p(Sij — P Vi DZ. 5 Stress constitutive equation

p=a(Z—Z)" 4+ as(A: A (Z — Z.)*
A:D A :D)?
n:ﬁl+ﬁ2\/D°D | 53([).[))
¢ Closure relations linked to microstructure.
¢ Material constants depend on particle friction and elasticity.

A = 1S+ co(VD : D)A + ¢3(A : D)A
Z =o1A:D+asVD:D+ a3VD : DZ + astr(D)

¢ Microstructure evolution equations.
Material constants depend on volume fraction and friction.

©
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Work in progress

@ Simulate quasistatic triaxial compression/extension;

Further test the continuum model against these
DEM data.

@ Study incipient yield behaviors and incorporate to
the model.

@ Extend the model to include strain rate-dependence.
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