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Roadmap for dense granular flow
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1. Fundamental aspects of stress and flow fields in dense

particulate systems.

2. Definition of material properties on relevant scales, along with

efficient ways to represent properties in models and establish

standards for material property measurements.

3. Given the practical need for continuum modeling capability,

identify the inherent limitations and how to proceed forward, e.g.,

hybrid models that connect with finer scale models (DNS, DEM,
finite element, stochastic, etc.) for finer resolution.

4. Size-scaling and process control (particle / unit-op / processing

system) is critical to industrial applications.
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Connection to roadmap
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Key questions 
addressed: 

Action taken in our 
project: 
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Connection to roadmap

What defines the stress in 
quasi-static regime?
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Key questions 
addressed: 

Identified internal variables 
defining stress states.

Action taken in our 
project: 
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Connection to roadmap

What defines the stress in 
quasi-static regime?

What parameters control the 
transitions between granular 
states?
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Key questions 
addressed: 

Identified internal variables 
defining stress states.

Demonstrated the connection 
between quasi-static transition 
with the jamming point.

Action taken in our 
project: 
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Connection to roadmap

What defines the stress in 
quasi-static regime?

What parameters control the 
transitions between granular 
states?

Continuum rheological models 
from quasi-static to rapid flow 
regimes?(Goal II in our project)
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Key questions 
addressed: 

Identified internal variables 
defining stress states.

Demonstrated the connection 
between quasi-static transition 
with the jamming point.

Developed a plasticity model for 
the quasi-static regime and linked 
to particle scale properties. 

Action taken in our 
project: 
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Connection to roadmap

What defines the stress in 
quasi-static regime?

What parameters control the 
transitions between granular 
states?

Continuum rheological models 
from quasi-static to rapid flow 
regimes?(Goal II in our project)

How is stress transmitted?
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Action taken in our 
project: 
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Outline

The continuum model development

Its predictive capabilities demonstrated by 
applications to unsteady shear flows

Future work

4
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Dissipative plasticity model*

5* D.G. Schaeffer. J. Differ. Equ. 66, 19, 1987 ; J.D. Goddard. JFM 568, 1, 2006

σij = pδij − pη
Sij√
D : D
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Dissipative plasticity model*

5

Stress is related to plastic deformation with rate independence

* D.G. Schaeffer. J. Differ. Equ. 66, 19, 1987 ; J.D. Goddard. JFM 568, 1, 2006

σij = pδij − pη
Sij√
D : D

Strain rate

Deviatoric strain rate
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Dissipative plasticity model*

5

Stress is related to plastic deformation with rate independence

Pressure and stress ratio are modeled as functions of 
microstructural variables: coordination number and fabric 
tensor.
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Dissipative plasticity model*

5

Stress is related to plastic deformation with rate independence

Pressure and stress ratio are modeled as functions of 
microstructural variables: coordination number and fabric 
tensor.

Stress is evolved through microstructural evolution. 

* D.G. Schaeffer. J. Differ. Equ. 66, 19, 1987 ; J.D. Goddard. JFM 568, 1, 2006

σij = pδij − pη
Sij√
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Model construction

Simulate particle dynamics of homogeneous  
assemblies under isotropic compression or simple 
shear using discrete element method (DEM)

Extract stress and structural information by 
averaging; seek constitutive relations.

6



/19

Computational system

3D periodic domain without gravity 

2000 mono-dispersed spherical particles

Restitution coefficient: 0.7

Inter-particle friction coefficient: 0.1-1

Simulate using the LAMMPS code*

7

Stress

The additional contribution to the stress is due to collisions and contacts, which can be derived
from the principle of virtual displacement for soft interaction potentials and can be modified for
hard sphere systems. The static stress is given as σs = 1/V

∑N
i

∑

j,j !=i
1

2
rijFij , where rij is the

vector pointing from the center of particle j to the center of particle i, and Fij is the contact force
acting on particle i by particle j. The summation can also be performed over contacts in the volume
as σs = 1/V

∑

c rijFij . 3

Combining the dynamic and static contributions, the stress tensor for the soft sphere system is

σ =
1

V

N
∑

i



miCiCi +
∑

j,j !=i

1

2
rijFij



 , (11)

which can be used to determine solid stresses from soft sphere MD simulations.

For hard spheres, replacing the force vector by momentum change per unit time, obtain

σ =
1

V

N
∑

i



miCiCi +
1

∆t

∑

n

∑

j

rijpj



 , (12)

where pj is the momentum change at collision n.

3For one contact c, 1

2
rijFij + 1

2
rjiFji = 1

2
rijFij + 1

2
(−rij)(−Fij) = rijFij .

3

S. J. Plimpton. J Comp Phys, 117, 1-19 (1995) http://lammps.sandia.gov

http://lammps.sandia.gov
http://lammps.sandia.gov
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S. J. Plimpton. J Comp Phys, 117, 1-19 (1995) http://lammps.sandia.gov

Small

http://lammps.sandia.gov
http://lammps.sandia.gov
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Characterize microstructure

Coordination number: average number of contacting neighbors

Fabric tensor: average of tensor product of unit contact normals

        magnitude indicates the microstructure anisotropy strength; sign 
indicates the anisotropy direction

8

Exclude particles with zero or one contact
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Evolution equations

Functions of A and D; satisfying frame indifference.

Satisfy stability requirement.

material constants, c and α, can be calibrated using DEM data.

11

Jaumann derivative
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4.2.2 Evolution equations

The microstructure is characterized by the coordination number, Z and the fabric tensor, B.
The evolution equations describing their rate of change against strain rate have be developed,
which take the following form:

Ż =
α1

φ
B : D + [

α2

φ

√
D : D + α3

√
D : DZ](1 +

α4tr(D)

B : D
) + Ztr(D), (6)

and
B̊ = c1S + c2(

√
D : D)B + c3(B : D)B, (7)

where Ż and B̊ are the time derivative and Jaumann derivative, respectively, i.e., Ż = dZ
dt

and B̊ = dB

dt + B · W − W · B. The α1–α4 and c1 –c3 in the evolution equations are material
constants, which can be calibrated against DEM data of the coordination number and fabric
evolution. The S and tr(D) denotes the deviatoric and trace of the strain rate tensor.

4.2.3 Yield function and flow rule

With D interpreted as the plastic strain rate, equation 3 represents a plastic flow rule. In
particular, we can rewrite the equation as

D̂ = −σ
∗/pη. (8)

By definition, |D̂| = 1, it follows from equation 8 that
∣

∣

∣

∣

σ
∗

pη

∣

∣

∣

∣

= 1, (9)

which represent a scalar yield condition on σ
∗. The yield function for this plastic model can

be written as
F (σ) = σ

∗ : σ
∗ − p2η2 = 0. (10)

The deviatoric stress tensor in principle stress space can be written as




σ1 − p 0 0
0 σ2 − p 0
0 0 σ3 − p



 , (11)

where p = 1
3(σ1 + σ2 + σ3). The yield function becomes

(σ1 − p)2 + (σ2 − p)2 + (σ3 − p)2 = p2η2. (12)

This prescribes a cone-shaped yield surface in the principle stress space with its apex at the
origin and with the space-diagonal as its symmetric axis. The angle of the cone depends on
η. As η changes with the fabric evolution, the material reaches a series of co-axial cones. The
increasing (decreasing) η dictates the isotropic hardening (softening) behavior of the model
material, which is a result of the fabric evolution as revealed by the yield function.

Ż = α1A : D + α2

√
D : D + α3

√
D : DZ + α4tr(D)

Å =
dA

dt
+ A · W −W · A

Stickel, J. et al. A constitutive model for microstructure and total stress in particulate suspensions. 
Journal of Rheology, 50(4):379–413, 2006.

Coordination number

Fabric tensor
Å = c1S + c2(

√
D : D)A + c3(A : D)A
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Constant pressure shear reversal
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FIG. 10: Mechanical coordination number versus friction µ obtained in our numerical simulations

explained in Section VI for different preparation protocols characterized by the initial volume

fractions φi indicated in the figure. The symbols and parameters used in these simulations are the

same as in the plot of Fig. 4.

geometry of the packing. Thus, the coordination number z appearing in Eq. (1) is the

geometrical coordination number related to volume, which is different from the mechanical

coordination number Z that can be measured through the force contact network relating to

the isostatic condition. In general we expect Z ≤ z, since some geometrical contacts may

carry no force. To show this, imagine a packing of infinitely rough (µ → ∞) spheres with

volume fraction close to 0.64. There must be z = 6 nearest neighbors around each particle

on the average. However, the mechanical balance law requires only Z = 4 contacts per

particle on average, implying that 2 contacts have zero force and do not contribute to the

contact force network.

Such a situation is possible: starting with the contact network of an isostatic packing

of frictionless spheres having z = 6 and all contacts carrying forces (then Z = 6 also), we

simply allow the existence of tangential forces between the particles and solve the force and

torque balance equations again for this modified system of infinitely rough spheres. Such

a solution is guaranteed to exist due to the isostatic condition. The resulting packing is

mechanically stable and is obtained by setting to zero the forces of two contacts per ball, on

30

6981                                                                                                                                                 

Our simple shear data Song et al. Jamming transition

Pressure depends on friction.

Transition point to quasi-static 
regime, Zc, is related to jamming 
transition.
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carry no force. To show this, imagine a packing of infinitely rough (µ → ∞) spheres with

volume fraction close to 0.64. There must be z = 6 nearest neighbors around each particle

on the average. However, the mechanical balance law requires only Z = 4 contacts per

particle on average, implying that 2 contacts have zero force and do not contribute to the

contact force network.

Such a situation is possible: starting with the contact network of an isostatic packing

of frictionless spheres having z = 6 and all contacts carrying forces (then Z = 6 also), we

simply allow the existence of tangential forces between the particles and solve the force and

torque balance equations again for this modified system of infinitely rough spheres. Such
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explained in Section VI for different preparation protocols characterized by the initial volume
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geometry of the packing. Thus, the coordination number z appearing in Eq. (1) is the

geometrical coordination number related to volume, which is different from the mechanical

coordination number Z that can be measured through the force contact network relating to

the isostatic condition. In general we expect Z ≤ z, since some geometrical contacts may

carry no force. To show this, imagine a packing of infinitely rough (µ → ∞) spheres with

volume fraction close to 0.64. There must be z = 6 nearest neighbors around each particle

on the average. However, the mechanical balance law requires only Z = 4 contacts per

particle on average, implying that 2 contacts have zero force and do not contribute to the

contact force network.

Such a situation is possible: starting with the contact network of an isostatic packing

of frictionless spheres having z = 6 and all contacts carrying forces (then Z = 6 also), we

simply allow the existence of tangential forces between the particles and solve the force and

torque balance equations again for this modified system of infinitely rough spheres. Such

a solution is guaranteed to exist due to the isostatic condition. The resulting packing is

mechanically stable and is obtained by setting to zero the forces of two contacts per ball, on
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Our simple shear data Song et al. Jamming transition

Pressure depends on friction.

Transition point to quasi-static 
regime, Zc, is related to jamming 
transition.

p = a(Z − Zc)b + α5(A : A)(Z − Zc)α6

a, b, α5,α6 depend on friction
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Friction dependence: stress ratio

Simple shear data 
averaged over volume 
fractions

Shear stress ratios 
increase magnitude as 
particle friction increases.
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Summary: model recapitulation

18

Stress constitutive equationσij = pδij − pη
Sij√
D : D
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Summary: model recapitulation

18

Closure relations linked to microstructure.
Material constants depend on  particle friction and elasticity.

Stress constitutive equation

p = a(Z − Zc)b + α5(A : A)(Z − Zc)α6

η = β1 + β2
A : D√
D : D

+ β3
(A : D)2

D : D

σij = pδij − pη
Sij√
D : D
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Summary: model recapitulation

18

Closure relations linked to microstructure.
Material constants depend on  particle friction and elasticity.

Stress constitutive equation

p = a(Z − Zc)b + α5(A : A)(Z − Zc)α6

η = β1 + β2
A : D√
D : D

+ β3
(A : D)2

D : D

Microstructure evolution equations.
Material constants depend on volume fraction and friction.

σij = pδij − pη
Sij√
D : D

Ż = α1A : D + α2

√
D : D + α3

√
D : DZ + α4tr(D)

Å = c1S + c2(
√

D : D)A + c3(A : D)A
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Work in progress

Simulate quasistatic triaxial compression/extension;  
Further test the continuum model against these 
DEM data.

Study incipient yield behaviors and incorporate to 
the model.

Extend the model to include strain rate-dependence.
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