Granular Flow in a Rough Annular Shear Validating DEM Simulations with Experiments

Joseph J. McCarthy[†] and C. Fred Higgs III*

[†]Department of Chemical Engineering University of Pittsburgh *Department of Mechanical Engineering Carnegie Mellon University

April, 2009

Outline

- Background
 - Motivation
 - Discrete Element Method
- 2 Model System
 - Geometry and Materials
 - Geometry and Models
- 3 Results
- 4 Outlook

DEM: the Gold Standard

- Model diverse particles and properties
- Measure relevant quantities
- Control material properties
- "Combinatorial" experiments

Dahl and Hrenya, Phys. Fluids, 2004.

Clear and Sawley, Appl. Math. Mod., 2002.

Khakhar et al., Phys. Fluids, 1997.

Arratia et al., Pow. technol., 2006.

N=2

N=4

(c)

(a)

DEM: the Gold Standard (cont.)

- Remarkable qualitative agreement
- Good mascroscopic quantitative agreement (IS, etc.)

Discrete Element Method

- Goal: gain *macroscopic* insight from *microscopic* considerations
- Method: Model interaction forces
- Specifics: Newton's Law $(\mathbf{F} = m\mathbf{a})$

Contact Mechanics – Normal Force Models

- Simple spring-dashpot model schematic (shown)
- Force models vary in both accuracy and computational difficulty.

Model	Restitution Coefficient (RC)	Mathematical Form	Comments
Purely Viscous (PV : Lee and Herrmann 1993)	Increases with velocity	$k_n \alpha^{3/2} - k_d v_n$	Computationally simple, yet poor RC, discontinuous force vs. approach
Oden-Martins (OM: 1984)	agrees w/experiment	$k_n \alpha^{3/2} - k_d v_n \alpha$	More computationally complex, realistic RC and force vs. approach
Tsuji (T : 1993)	Constant	$k_n \alpha^{3/2} - \tilde{k}_d (\sqrt{mk_n}) v_n \sqrt[4]{\alpha}$	More computationally complex, yet yields constant RC and unrealistic force at small unloading
Walton-Braun dependent (WB-d: 1986)	agrees w/experiment	$k_1 \alpha$ $k_2 (\alpha - \alpha_0)$ $k_u = \mathcal{F}(f_n)$	Computationally simple, realistic RC and force vs. approach
Walton-Braun independent (WB-i: 1986)	constant	$k_1\alpha$ $k_2(\alpha - \alpha_0)$ $k_2 = \beta k_1$	Computationally simple, constant RC and realistic force vs. approach

Contact Mechanics – Normal Force Models

- Simple spring-dashpot model schematic (shown)
- Force models vary in both accuracy and computational difficulty.

Model	Restitution Coefficient (RC)	Mathematical Form	Comments
Purely Viscous (PV: Lee and Herrmann 1993)	Increases with velocity	$k_n \alpha^{3/2} - k_d v_n$	Computationally simple, yet poor RC, discontinuous force vs. approach
Oden-Martins (OM: 1984)	agrees w/experiment	$k_n \alpha^{3/2} - k_d v_n \alpha$	More computationally complex, realistic RC and force vs. approach
Tsuji (T : 1993)	Constant	$k_n \alpha^{3/2} - \tilde{k}_d (\sqrt{mk_n}) v_n \sqrt[4]{\alpha}$	More computationally complex, yet yields constant RC and unrealistic force at small unloading
Walton-Braun dependent (WB-d: 1986)	agrees w/experiment	$k_{1}\alpha$ $k_{2}(\alpha - \alpha_{o})$ $k_{u} = \mathcal{F}(f_{n})$	Computationally simple, realistic RC and force vs. approach
Walton-Braun independent (WB-i: 1986)	constant	$k_1\alpha$ $k_2(\alpha - \alpha_0)$ $k_2 = \beta k_1$	Computationally simple, constant RC and realistic force vs. approach

Force versus Approach

- A simple test of a model's accuracy
- Area "under" the curve represents energy dissipation.

Coefficient of Restitution

- A useful test of model's dynamic response (typically **only** test)

Contact Mechanics – Friction Forces

Coulomb limit applies after (macro-)sliding occurs:

$$T=\mu N$$

Sliding onset is more complicated (Mindlin, 1949):

- Friction has a "memory": $T = T_{old} + k_T s$
- Watch out for rolling on perfectly smooth surface! (rolling friction?).

Friction Force Models

- Key issue is incremental friction (proportional to displacement, not velocity → creep!)
- Capturing microslip not generally considered critical.

Model	Form	Displacement	k,	Comments
Zero Model (Tsuji 1993)	-k,s	$s = v_t \Delta t$	constant	Computationally simple, yet allows particle creep
One Model (Cundall and Strack 1979)	-k,s	$s = \int_{0}^{t} v_{\iota}(\xi) d\xi$	constant	More computationally complex, realistic collisions, no particle creep (save s_n)
Two Model (Walton and Braun 1986)	-k,s	$s = \int_{0}^{t} v_{t}(\xi) d\xi$	$k_t = \mathcal{T}(f_t)$	More computationally complex, realistic collisions, no particle creep, dissipates energy through microslip (save s_o, f_i)

Walton-Braun (Two Model):

$$k_t = k_{to} \left(1 - \frac{f_t' - f_t^*}{\mu f_n - f_t^*}\right)^n for loading$$

$$k_t = k_{to} \left(1 - \frac{f_t^* - f_t'}{\mu f_n + f_t^*}\right)^n$$
 for unloading

Friction Force Models

- Key issue is incremental friction (proportional to displacement, not velocity → creep!)
- Capturing microslip not generally considered critical.

Model	Form	Displacement	k,	Comments
Zero Model (Tsuji 1993)	-k,s	$s = v_t \Delta t$	constant	Computationally simple, yet allows particle creep
One Model (Cundall and Strack 1979)	-k,s	$s = \int_{0}^{t} v_{t}(\xi) d\xi$	constant	More computationally complex, realistic collisions, no particle creep (save s_a)
Two Model (Walton and Braun 1986)	-k,s	$s = \int_{0}^{t} v_{t}(\xi) d\xi$	$k_t = \mathcal{F}(f_t)$	More computationally complex, realistic collisions, no particle creep, dissipates energy through microslip (save s _a , f _i)

Walton-Braun (Two Model):

$$k_t = k_{to} \left(1 - \frac{f_t' - f_t^*}{\mu f_n - f_t^*}\right)^n for loading$$

$$k_t = k_{to} \left(1 - \frac{f_t^* - f_t'}{\mu f_0 + f_t^*}\right)^n$$
 for unloading

Force versus Approach

- Note the asymptote to Coulomb sliding
- Zero model not shown since force is not a function of displacement

Model System

- Roughened inner cylinder rotates
- Experimentally extract f, v, T profiles

Model System (cont.)

- Roughness varies from $0 \rightarrow 1$
- Ω varies from 220RPM \rightarrow 270RPM
- "Base case": $\Omega = 240 \mathrm{RPM}, \, \mathrm{R} = 0.6$

Match Properties

- Match dissipation for both plastic and visco
- Some simulations in 2d, others with varying gaps

Geometry and Models

Model variation	Version 1	Version 2+
Normal force model	Plastic [P]	Spring-Dashpot [p]
Friction force model	Mindlin [M]	Cundall [m]
Rolling friction	Large [R']	Present [R]
		Absent [r]
Dissipation	Fit to experiment [F]	Larger than physical [f]
Geometry	Fit to experiment [3d]	Larger head space [3D]
		Ideal two dimensional [2D]
Particle Geometry	Aspherical [A]	Perfect spheres [a]

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A] Spring-Dashpot [p]
One Model [m]
Absent [r]
Larger [f]
Planar [2D]
Spheres [a]

 \bullet In 2d, max packing 0.91; 3d systems overlap so f above 1

• Particle geometry is important; little else matters

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A] Spring-Dashpot [p]
One Model [m]
Absent [r]
Larger [f]
Planar [2D]
Spheres [a]

• Particle geometry is important; little else matters

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A]

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A] Spring-Dashpot [p]
One Model [m]
Absent [r]
Larger [f]
Planar [2D]
Spheres [a]

 \bullet In 2d, max packing 0.91; 3d systems overlap so f above 1

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A] Spring-Dashpot [p]
One Model [m]
Absent [r]
Larger [f]
Planar [2D]
Spheres [a]

• Particle geometry is important; little else matters

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A] Spring-Dashpot [p]
One Model [m]
Absent [r]
Larger [f]
Planar [2D]
Spheres [a]

 \bullet In 2d, max packing 0.91; 3d systems overlap so f above 1

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A]

- In 2d, max packing 0.91; 3d systems overlap so f above 1
- Particle geometry is important; little else matters

Velocity Profile by Model

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A]

- System geometry match is *critical* (2D qualitatively wrong)!
- Rolling friction and/or dissipation may be tuned (to mimic asphericity?)
- Visco is way off

Granular Temperature by Model

Plastic Dissipation [P] Two Model Friction [M] Rolling friction [R'/R] Dissipation Fit [F] Geometry Fit [3d/3D] Particles Aspherical [A]

- "Extra" dissipation may work (but may create more errors)
- Rolling friction cannot be tuned properly
- Visco is way off

Varying Roughness/Rotation Rate (f Profile)

- Max location is very robust
- Roughness simulations captures trends properly (even cross-over)

Rotation rate is very slightly off

Varying Roughness/Rotation Rate (Velocity)

- Roughness trend is captured
- Rotation trend is captured

Varying Roughness/Rotation Rate (Granular Temp)

- Roughness trend is captured
- Rotation rate trend is captured

Parametric Study, f_{tot} (Solid Fraction Profile)

• Surprising agreement both qualitative and quantitative

Parametric Study, f_{tot} (Velocity Profile)

- Qualitative trends are captured
- Slightly off quantitatively (perhaps)

Parametric Study, f_{tot} (Granular Temp Profile)

• Consistently overpredict T

Outlook

- DEM "gold standard" good quantitative
- Modeling exact physical geometry is critical
- Modeling of normal force/dissipation is important for v profile
- Modeling friction is more flexible (likely **not viscous**)
- Rolling friction can compensate for shape for v or T, not both
- Particle shape itself needed to capture both v and T
- Looking at f, v, and T is surprisingly discriminatory
- Single-particle tests may not tell whole story ...
- Acknowledgment: National Energy Technology Lab, Department of Energy

