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DEM: the Gold Standard

T, (hot wall )
T, (cold wall )

@ Model diverse particles
and properties

T
T=

. =
@ Measure relevant quantities penils

Dahl and Hrenya, Phys. Fluids, 2004.

@ Control material properties

@ “Combinatorial” experiments

@ ., (b) ’ ©

N=0 N=2 N=4

Arratia et al., Pow. technol., 2006 Khakhar et al., Phys. Fluids, 1997.




@ Good mascroscopic quantitative agreement (IS, etc.)

@ Remarkable qualitative agreement

~—
+
o~
—
o
S

SN——
o
—
o
—
—
&S,
+
@P)
o
—
o
O
(o)
—
p——
~
—
~




Discrete Element Method

@ Goal: gain macroscopic insight from
microscopic considerations

@ Method: Model interaction forces

@ Specifics: Newton’s Law (F = ma)




Contact Mechanics — Normal Force Mo

@ Simple spring-dashpot model schematic (shown)

@ Force models vary in both accuracy and
computational difficulty.

Model estitution | Math ical Form C ts
Coefficient
(RC)
Purely Viscous [ Increases k 0 -k v Computationally
R . n d'n .
(PV : Lee and with velocity simple, yet poor RC,
Herrmann 1993) discontinuous force vs.
approach
Oden-Martins agrees | ko’ - kv, 0 More computationally
(OM : 1984) w/experiment complex, realistic RC
and force vs. approach
Tsuji (T : 1993) | Constant N _ i fmk. v More computationally
ka0 Kk, v, Hor complex, yet yields
constant RC and
unrealistic force at small
unloading
‘Walton-Braun agrees ko Computationally
dependent wlexperiment K simple, realistic RC and
(WB-d : 1986) 2(0e—ar,) force vs. approach
k,=Af,)
‘Walton-Braun constant ko Computationally
independent K (o= simple, constant RC
(WB-i : 1986) (@-a,) and realistic force vs.
k.=Bk, approach
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ct Mechanics — Normal Force Models

@ Simple spring-dashpot model schematic (shown)

@ Force models vary in both accuracy and
computational difficulty.

Herrmann 1993)

Walton-Braun
independent
(WB-i : 1986)

Constant

constant

k0¥ —k, (/mk, v, {a

Model Restitution | Mathematical Form C s
Coefficient
(RC)
Purely Viscous [ Ii k o -k,v Computationally
(PV :Lee and with velocity | " ¢ simple, yet poor RC,

discontinuous force vs.
approach

ore computationally
complex, yet yields
constant RC and
unrealistic force at small
unloadin,

Computationally
simple, constant RC
and realistic force vs.
approach

und
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@ A simple test of a model’s accuracy

2x1078 4x10-8 6x10-¢
approach (m)

@ Area “under” the curve represents energy dissipation.




Coefficient of Restitution
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impact velocity (m/s)
@ A useful test of model’s dynamic response (typically only
test)
@ Note that CR accuracy is not necessary for obtaining
correct kinematics!




Contact Mechanics — Friction Forces

Coulomb limit applies after (macro-)sliding occurs:
T =uN

T

/N

Sliding onset is more complicated (Mindlin, 1949):

p— Q
.
/> /

| annulus of v
\ «—— microslip
\ ]
A T 4

@ Friction has a “memory”: T = Ty1q + krs
@ Watch out for rolling on perfectly smooth surface! (rolling
friction?).




o Key issue is incremental friction
(proportional to displacement, not velocity
) — creep!)

@ @ Capturing microslip not generally

E Slider

considered critical.

Model Form | Displacement | k, Comments

Zero Model -k s=vAt constant | Computationally simple, yet

(Tsuji 1993) allows particle creep

One Model -k;s f constant | More computationally

(Cundall and s= Jv, (&)dg complex, realistic

Strack 1979) ° collisions, no particle creep
(save s,)

Two Model ks P k=Ff) | Morecomputationally

(Walton and s= JV,( T | complex, realistic

Braun 1986) ° collisions, no particle creep,

dissipates energy through
microslip (save s, f )

Walton-Braun ky = k(1 — J} J;ﬁ ) for loading
(Two Model):

ko = kio(1 — Le22)" for unloading




Friction Force Models

@ Key issue is incremental friction
(proportional to displacement, not velocity
Y/ — creep!)
@ @ Capturing microslip not generally

considered critical.

Model | Form | Displacement | k, | Comments

Walton-Braun ky = Eyo(1 J} —Ji ) for loading
(Two Model):

ky = k(1 — J}ni;?t;)n for unloading

]
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o Note the asymptote to Coulomb sliding
@ Zero model not shown since force is not a function of displacement
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@ Roughened inner cylinder rotates
@ Experimentally extract f, v, T profiles




Model System (cont.)

@ Roughness varies from 0—1
o ( varies from 220RPM—270RPM
@ “Base case”: Q = 240RPM, R = 0.6




Match Properties
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Coefficient of Restitution (Vi/V;)
o o
w (&
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[N}

~ Plastic Deformation
~ Visco Dissipation
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0 05 1 15 2 25 3 35 4
Impact Velocity (V;)

@ Match dissipation for both plastic and visco

@ Some simulations in 2d, others with varying gaps




y and Models

| Model variation ‘ Version 1 | Version 2+ ‘
Normal force model Plastic [P] Spring-Dashpot [p]
Friction force model Mindlin [M] Cundall [m)]
Rolling friction Large [R'] Present [R]
Absent [r]
Dissipation Fit to experiment [F] Larger than physical [f]
Geometry Fit to experiment [3d] Larger head space [3D]
Ideal two dimensional [2D]
Particle Geometry Aspherical [A] Perfect spheres [a]
Geometry Particles
Ql'op <>'I'0p

EED D

side Side




0.8 PMRF2Da
PmRF3Da
pPMRF3Da
0.64 PMRf3Da

PMRF3da
0.4{ PMRF3dA

0.2

Normalized Bin Radius (dimensionless)

Solid fraction,

Plastic Dissipation [P]
Two Model Friction [M]
Rolling friction [R’/R]
Dissipation Fit [F]
Geometry Fit [3d/3D]
Particles Aspherical [A]

Spring-Dashpot [p]
One Model [m]
Absent [r]

Larger [f]

Planar [2D]
Spheres [a]

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters




0.8 PMRF2Da
PMRF3Da

pMRF3Da
0.64 PMRf3Da
PMRF3da
0.4{ PMRF3dA

0.2

Normalized Bin Radius (dimensionless)

Plastic Dissipation [P]
Two Model Friction [M]
Rolling friction [R’/R]
Dissipation Fit [F]
Geometry Fit [3d/3D]
Particles Aspherical [A]

Spring-Dashpot [p]
One Model [m]
Absent [r]

Larger [f]

Planar [2D]
Spheres [a]

0 0.2 0.4 0.6 0.8 1
Solid fraction, v

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters




1 L L L L L Plastic Dissipation [P] Spring-Dashpot [p]

Two Model Friction [M] One Model [m]

Rolling friction [R’/R] Absent [r]

Dissipation Fit [F] Larger [f]
0.84 PMRF2Da | Geometry Fit [3d/3D] Planar [2D]
: Particles Aspherical [A] Spheres [a]

pPMRF3Da
0.64 PMRf3Da

PMRF3da
0.4{ PMRF3dA

0.2

Normalized Bin Radius (dimensionless)

0 0.2 0.4 0.6 0.8 1
Solid fraction, v

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters




0.8 PMRF2Da
PmRF3Da
pPMRF3Da
0.64 PMRf3Da

PMRF3da
0.4{ PMRF3dA

0.2

Normalized Bin Radius (dimensionless)

Solid fraction,

Plastic Dissipation [P]
Two Model Friction [M]
Rolling friction [R’/R]
Dissipation Fit [F]
Geometry Fit [3d/3D]
Particles Aspherical [A]

Spring-Dashpot [p]
One Model [m]
Absent [r]

Larger [f]

Planar [2D]
Spheres [a]

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters
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pPMRF3Da
0.64{ |PMRf3Da

PMRF3da
0.4{ PMRF3dA

0.2

Normalized Bin Radius (dimensionless)

0 0.2 0.4 0.6 0.8 1
Solid fraction, v

Plastic Dissipation [P]
Two Model Friction [M]
Rolling friction [R’/R]
Dissipation Fit [F]
Geometry Fit [3d/3D]
Particles Aspherical [A]

Spring-Dashpot [p]
One Model [m]
Absent [r]

Larger [f]

Planar [2D]
Spheres [a]

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters




1 L L L L L Plastic Dissipation [P] Spring-Dashpot [p]
Two Model Friction [M] One Model [m]

Rolling friction [R’/R] Absent [r]
Dissipation Fit [F] Larger [f]
0.84 PMRF2Da | Geometry Fit [3d/3D] Planar [2D]
' PmMRF3Da N Particles Aspherical [A] Spheres [a]
pPMRF3Da

0.64 PMRf3Da

PMRF3da
0.4{ PMRF3dA
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Solid fraction, v

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters




0.8 PMRF2Da
PmRF3Da
pPMRF3Da
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PMRF3da

0.4 |PMRF3dA

0.2

Normalized Bin Radius (dimensionless)
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Rolling friction [R’/R]
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Spring-Dashpot [p]
One Model [m]
Absent [r]

Larger [f]

Planar [2D]
Spheres [a]

@ In 2d, max packing 0.91; 3d systems overlap so f above 1
o Particle geometry is important; little else matters




locity Profile by Moc
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0.8 - PMRF2Da L Geometry Fit [3d/3D] Planar [2D]
PMRF3Da Particles Aspherical [A] Spheres [a]

pPMRF3Da
PMRf3Da L

o
o
L

PMRF3da
PMRF3dA

o
B
L

Normalized Bin Radius (dimensionless)
o
N

0

0 002 004 006 008 01 012 014 016
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@ System geometry match is critical (2D qualitatively wrong)!

@ Rolling friction and/or dissipation may be tuned (to mimic
asphericity?)

@ Visco is way off
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Geometry Fit [3d/3D] Planar [2D]
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o “Extra” dissipation may work (but may create more errors)
o Rolling friction cannot be tuned properly

@ Visco is way off

Result
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@ Max location is very robust

@ Roughness simulations captures trends properly (even
cross-over)

@ Rotation rate is very slightly off




ng Roughness/Rotation Rate (Velocit:
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@ Roughness trend is captured

@ Rotation trend is captured




ng Roughness/Rotation Rate (Granular Temp
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@ Roughness trend is captured

@ Rotation rate trend is captured




Parametric Study, fi,; (Solid Fraction Profile)

Normalized Bin Radius (dimensionl ess)

0 0.2 04 0.6 0.8 1
Solid fraction, v

@ Surprising agreement both qualitative and quantitative

Results
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Parametric Study, fi,; (Velocity Profile)
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@ Qualitative trends are captured
@ Slightly off quantitatively (perhaps)

Results
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Parametric Study, f;: (Granular Temp Profile)
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o Qualitative trend is decent
@ Consistently overpredict T

Results
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DEM “gold standard” — good quantitative
Modeling exact physical geometry is critical

Modeling of normal force/dissipation is important for v
profile

@ Modeling friction is more flexible (likely not viscous)

©

®© 6 6 ¢

Rolling friction can compensate for shape for v or T, not
both

Particle shape itself needed to capture both v and T
Looking at f, v, and T is surprisingly discriminatory
Single-particle tests may not tell whole story ...
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