

NATIONAL ENERGY TECHNOLOGY LABORATORY

Implementation of Cartesian Cut-Cell Technique into the Multiphase Flow Solver MFIX

Jeff Dietiker

NETL 2009 Workshop on Multiphase Flow Science Euro-Suites Hotel, Morgantown, WV April 22-23, 2009

Overview

- Introduction
- Cartesian grid cut cell implementation
- Results:
 - Single phase
 - 2D: channel flow, flow over a cylinder
 - 3D: flow over a hemisphere
 - Gas / Solids phase
 - 2D Hourglass flow
 - 2D spouted bed
 - 3D O3 decomposition
- Latest Additions
- Conclusions

Introduction

- MFIX: Multiphase Flow with Interphase eXchanges
 - Finite volume, 3D Cartesian or cylindrical coordinate system
 - Continuum model (Interpenetrating fluid and solids phases)
 - Mass and momentum balances equation for gas and solids phases
 - Boundary conditions typically specified along planes, aligned with grid
 - Objective: Add flexibility and accuracy in geometric representation of boundaries
- Cartesian Grid (Cut-cell) technique:

Based on: M.P. Kirkpatrick, S.W. Armfield, J.H. Kent, "A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional Cartesian grid," Journal of Computational Physics, 184 (2003) 1–36.

- Representation of curved boundaries
 - Computational cells are truncated at the wall to conform to the shape of the boundaries
 - Preprocessing:
 - Representation of curved or sloping boundary
 - Identify boundary cells (cut cells)
 - Identify "Problematic" cells
 - Computation of cells volumes and face areas
 - Solution
 - Flux computation through cut cell faces
 - Pressure forces
 - Wall shear stress
 - Postprocessing: VTK files (geometry must be saved in every file)

WFiX

Representation of curved or sloping boundaries

- Quadric surfaces (normalized form): $f(\mathbf{x}) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 + d = 0$
- Quadric defined by λ_i , d rotation and translation
- Problematic cells:
 - Velocity cells with only one pressure node
 - Pressure cells with only one velocity node
 - Small cells (stiffness)

Representation of curved or sloping boundaries

Advection of u-velocity through East face

Diffusion flux across East face

Based on zero-velocity at the wall

• Problematic cells:

- Velocity cells with only one pressure node
 - Kirkpatrick: Use Master/Slave cell linking procedure: velocity node is moved to adjacent cell
 - Current approach: Velocity node is moved to the center of the cut face (velocity is set to zero)
 - Note: Treating those cells limit their width to half-width of regular cell
- Pressure cells with only one velocity node
 - Current approach: velocity derivatives (in tr(D)) are computed from $\frac{\partial u}{\partial x} \approx \frac{N_x u}{\Delta h}$

- Kirkpatrick: Remove pressure node from computation
- Current approach: Option to move intersection point to nearest corner, based on some user-specified tolerance (e.g., 1% of side length)

• Limitations:

- In 3D, cut face can have between 3 and 6 vertices (visualization)
- Intersection of quadrics not necessarily well represented
- Only one cut-face per cell
- Only one intersection point allowed on each edge
- Adjusting grid possible only for simple 2D geometries
- Problem compounded by staggered grid representation

3D cylinder-cylinder intersection

Coarse grid

Fine grid

Cost of Cut-cell Method

- Preprocessing:
 - < 1 second for coarse 2D grid
 - ~ 1 minute for fine 3D grid
- Post-processing:
 - Varies based on number of variables saved and frequency of file saving
 - << 1 second for coarse 2D grid
 - A few seconds for fine 3D grid

Geometry	Grid size	Number of cells	Standard cells	Cut cells	Blocked cells	Overhead	Overhead/ cut cell
2D	40x80	3200	71.50%	7.25%	21.25%	5.52%	0.75
3D	60x100x30	180000	9.55%	3.70%	86.75%	2.49%	0.67

2D Single Phase Channel Flow

2D skewed channel flow

Parabolic velocity profile at Inlet

GRID A: 7 Cells across channel (x-direction)

GRID B: 15 Cells across channel (x-direction)

Staircase steps (β = 35 Deg) Cut cells (β = 35 Deg)

 β = 0 Deg (channel aligned with grid):

20 velocity profiles extracted at constant y-values

NATIONAL ENERGY TECHNOLOGY LABORATORY

2D Single Phase Channel Flow

2D skewed channel flow, Re = 1, First Order

2D Single Phase Channel Flow

• 2D skewed channel flow, Re = 1 error

 2D flow over a cylinder, Re = 40 (Steady case)

GRID	IMAX x JMAX	cells/diameter
Α	120x80	20
В	200x140	40
С	320x240	80
D	420x320	120
E	520x420	160

NATIONAL ENERGY TECHNOLOGY LABORATORY

Surface Pressure Distribution

 General trend captured by Staircase method, even.

with coarse grid, with pressure oscillations

 Cut-cell technique provides accurate and smooth surface pressure distribution

g

Surface Vorticity Distribution

• Staircase: Staircase Cut-cell

- Vorticity under-predicted

with coarse grid.

- Large oscillations even with fine grid
- Cut-cell:
 - Smooth distribution
 - Accuracy improves as grid is refined

Grid Convergence Analysis

Author(s)	Method	CD	CD,P	CD,F	Front Cp	Rear Cp	Sep. Angle (Deg.)	Lr/D
Grove et al. (1963)	Experimental		0.935		1.190			
Takami & Keller (1969)	Numerical	1.536			1.141		53.55	2.35
Son & Hanratty (1969)	Numerical	1.510					53.90	
Dennis & Chang (1970)	Numerical	1.522	0.998	0.524	1.144		53.80	2.35
Collins & Dennis (1973)	Numerical	1.560					53.60	2.15
Dennis (1973)	Numerical	1.494			1.142			
Nieuwstadt & Keller (1973)	Numerical	1.550			1.120		53.34	2.18
Fornberg (1980)	Numerical	1.498			1.140		55.00	2.24
Kirkpatrick et al. (2003)	Numerical	1.535			1.0 *		53.55	2.26
MFIX, Staircase, GRID E, 2 nd Order	Numerical	1.537	1.004	0.533	1.184	-0.484	51.75	2.21
MFIX, Cut Cell, GRID E, 2 nd Order	Numerical	1.542	1.010	0.532	1.192	-0.480	53.74	2.27

- 2D flow over a cylinder, Re = 80 to 300 (Unsteady case)
 - Staircase method tends to under-predict vortex shedding frequency
 - Cut cell technique compares well to experimental data, and results obtained by Immersed Boundary Method (Silva et al., 2003)

3D Single Phase Hemisphere Flow

Formation of Hairpin Vortices over a Hemispheric

protuberance (Gas phase only)

- Incoming laminar BL
- Grid size = 500,000 cells, 30 cells per diameter
- Hairpin vortices are captured

Vortex shedding frequency compares well

with experimental data

2D Gas/Solids Phase Flow

• 2D Hourglass flow

- Coarse grid (40x80)
- Geometry represented by 3 quadrics
- Proper behavior observed

2D Gas/Solids Phase Flow

2D Spouted bed

- Grid size = 71x108
- Ratio width / depth = 10
- Dominant frequency well predicted for Hb =7.5 and 10.0 cm

Dominant Frequency versus Superficial Gas Velocity

3D Gas/Solids Phase Flow

• 3D Ozone decomposition

- Simple 3D geometry (cylinder)
- Second order spatial discretization
- O3 mass fraction at inlet = 0.1 (O3 air mixture)
- Full 3D simulation gives similar results to 2D-axisymmetric simulation, with better prediction for smallest and largest superficial velocities
- Simulation with finer grid under way

2D Axisymmetric

18 x 56

36 x 56 *

72 x 112 *

GRID

Α

C

3D

36 x 56 x 36

^{*} From "Fluid Dynamic Simulation of O3 Decomposition in a Bubbling Fluidized Bed", Syamlal, M., and O'Brien, T.J., AlChe Journal, Vol. 49, No 11 (2003)

Free-slip boundary conditions

- All terms implying zero velocity at wall are turned off (e.g, $\alpha_e = 0$)
- 2D Channel flow (Gas phase only): Cut cell technique shows clear improvement over the staircase representation for coarse and fine grid

- Free-slip boundary conditions
 - 2D Hourglass flow:

Solids mass flow rate larger than with NSW

NATIONAL ENERGY TECHNOLOGY LABORATORY

Other boundary conditions (in progress)

- Mass Inflow (MI) and Pressure Outflow (PO) boundary conditions can be specified along quadric surfaces (2D and 3D)
- Less stable than original MFIX BC's for PO (Gas/ Solids phase)

Boundary Geometry

- Boundary geometry can be specified from:
 - Quadric surfaces (2D and 3D), with intersections
 - User-defined function (2D and 3D)
 - A series of vertices defining a polygon (2D only)

Conclusions

- Successful Implementation of Cartesian grid Cut-cell technique into MFIX
- Method tested for:
 - Internal flow
 - External flow
 - Single phase
 - Gas/solids phase
- The 3 steps (Preprocessing, flow solution, post-processing) are efficient
- Future work (short term):
 - Parallelization of the code
 - Partial slip boundary conditions
 - Remove the dead cells and perhaps use a space-filling curve to index the cells
- Future work (long term):
 - Ability to define boundaries using surface triangulations
 - Ability to accept mesh information from an external Mesh generator such as Gambit
 - Hanging-nodes
 - Adaptive mesh refinement
 - Moving boundaries and immersed objects