Modeling Particle-Fluid Momentum Transfer in Polydisperse Gas-Solid Flows Through Direct Numerical Simulations Based on the Immersed Boundary Method

Principal Investigator: Shankar Subramaniam
Research Assistant: Sudheer Tenneti

Department of Mechanical Engineering
Iowa State University
Development, Verification and Validation of Multiphase Models for Polydisperse Flows

Hrenya, Cocco, Fox, Subramaniam & Sundaresan
Project Manager: Ronald Breault
ISU Work Details
Connections to Multiphase Flow Roadmap

1. Develop drag relations that can handle particle size and density distributions

2. Development of constitutive relations for continuum models from high fidelity simulations
MFIX Two-Fluid Model

Gas-phase

Solid particles

u_g, v_{sm}

ϵ_g, ϵ_s

Gas-particle interaction

Drag Laws: Correlations for average force on particles

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
Introduction

Realization

Gas-phase

Continuous avg. fluid field

Distribution function

Continuous avg. solid field

EE simulations

Statistical averaging

Volume/ensemble averaging

$\varepsilon_g, \mathbf{u}_g$

$\varepsilon_{sm}, \mathbf{v}_{sm}$

$\langle F^p \rangle : \text{Mean Drag}$

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
Drag Laws (Computational)

\[
\langle F_f p \rangle = \langle F_f p \rangle (\phi, \text{Re}_m)
\]

Monodisperse drag laws

- Hill et al (JFM 2001)
- Beetstra et al (AiChE, 2007)

Using Lattice Boltzmann Method (LBM)

Present Approach: Immersed Boundary Method (IBM)

IBM - LBM Comparison

- **IBM**: Continuum Navier-Stokes Solver
- Incompressible flow solution: elliptic pressure solve
- Sphere: impose BC on boundary
- Drag: integrating stress tensor at sphere boundary (crosses)

- **LBM**: Discretized distribution function of fluid molecules
- Parallel local operations, always compressible; $Ma = Kn Re$
- Sphere: Stair-step function
- Drag: reported for hydrodynamic radius (dotted circle)
Mean Drag

Drag Laws: Correlations for \textit{average} force on particles

What is the averaging performed over?

Particle Configurations

Particle velocity distribution

Particle acceleration distribution: from DNS

Fluid velocity fluctuations (not necessarily turbulence)

Modeling approach

\[f(x, v, r, t) \]

One-particle distribution function

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
Drag Law Model

\[f(x, v, r, t) \]

- Modified KTGF (Hrenya)
- QMOM (Fox)

One-particle distribution function
(Mean number density)

Accounts for:
- dependence on particle size
- dependence on particle velocity

Does not explicitly account for:
- neighbouring particle effects
- effect of fluid

Need to be modeled

Mean Drag

Conditional average of acceleration (drag)

\[\langle F^{fp} \rangle(x, t) = \int_{[v,r]} m(r) \langle A | \ldots, x, v, r; t \rangle f(x, v, r, t) \, dv \, dr \]

Workshop on Multiphase Flow Science
Shankar Subramaniam, Iowa State U.
Drag Law: Mean Acceleration

\[\langle A_i \rangle = \beta \left(\langle v_i \rangle - \langle u^{(f)}_i \rangle \right) \]

Simple extension of mean acceleration model to instantaneous particle acceleration

\[A_i = -\beta W_i \]

\[W_i = v_i - \langle u^{(f)}_i \rangle \]
Fluctuating Particle Acceleration-velocity Scatter

Drag law applied to velocity distribution does not recover the acceleration distribution

\[A_i = -\beta W_i \]

\(\beta: \) Hill et al. (JFM 2001)

\(\text{Re}_m = 20 \)
\(\text{Re}_T = 16 \)
\(\phi = 0.2 \)

\(\text{IBM} \) and Hill et al Drag law
Role of Particle Acceleration Fluctuations

Continuum model (MFIX-EE)

Mean particle acceleration

Affect granular temperature equation

Fluctuations in particle acceleration:

\[
\langle A_{ij}'' v_{ij}'' \rangle
\]

Koch (Phys. Fluids 1990)

Fluctuations in particle acceleration:

- correlate with fluctuations in particle velocity
- generate a hierarchy of moments

Need a model for:

\[
\langle A | x, v, r; t \rangle
\]

provide closures for \textbf{ALL} moments

To account for effect of fluid phase, neighbour particle interactions etc

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
Instantaneous Particle Acceleration Model

\[dv_i = A_i^{(d)} dt + B_{ij} dW_j \]

Drift term
\[\omega v_i = \beta(i) \langle W_i \rangle dt - \gamma_{ij} \nu_{j}'' dt + \sum_{ij} dW_j \]

Mean slip
- inverse of Lagrangian particle velocity autocorrelation time
- how long particle retains memory of initial velocity
- function of Stokes number

Velocity fluctuations
- (particle velocity distribution)

Wiener process
- (effect of neighbouring particle + fluid phase fluctuations)

Shankar Subramaniam, Iowa State U.
Langevin Model: Coefficients

\[\beta_{(i)} = \beta_{(i)}(\phi, \text{Re}_m, \text{Re}_T) \]

- Depends on volume fraction
- Reynolds number based on mean slip velocity
- Reynolds number based on particle granular temperature

\[\gamma, \Sigma \quad \text{Freely evolving suspensions} \]

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
Langevin Model: Coefficients

\[dv''_i = -\gamma v''_i \, dt + \sum dW_j \]

Use Lagrangian structure function

\[D_L(s) = \left\langle [v''_i(t + s) - v''_i(t)]^2 \right\rangle \]

Lagrangian structure function for Langevin model

\[D^*_L(s) = \sum^2 s \]

\[\frac{\sum^2}{2\gamma} = \frac{1}{3} T \]

Extract the structure function from the DNS of freely evolving suspensions (particles feel the fluid force)
Test Particle in a Homogeneous Assembly

- Assembly of fixed particles: initialized with a velocity distribution
- Particles within radius of influence of moving test particle are allowed to move
- Velocity autocorrelation and Lagrangian structure function will be extracted to determine coefficients
Drag laws: Effect of Particle Size Distribution

Bidisperse Example

\[\langle V \mid r = R_2, \ldots \rangle \quad \Rightarrow j_{Oi} \]
\[\langle V \mid r = R_1, \ldots \rangle \]

Segregation due to drag manifests as flux of size-class relative to mean solids flux (Hrenya)

\[\langle A \mid r = R_\alpha, \ldots \rangle - \langle A \mid \ldots \rangle \]

Driving force is drag conditional on size

Workshop on Multiphase Flow Science
Shankar Subramaniam, Iowa State U.
Instantaneous Particle Acceleration Model

Extension to bidisperse case

\[
\langle W_i | r = R_\alpha \rangle = \langle v_i | r = R_\alpha \rangle - \langle u_i^{(f)} \rangle
\]

\[
m^\alpha dv_i^\alpha = -\beta_{(i)}^{\alpha\eta} \langle W_i | r = R_\eta \rangle \, dt - \gamma_{ij}^{\alpha\eta} v_j''(\eta) \, dt + \sum_{ij}^{\alpha\eta} d\mathcal{W}_j^\eta
\]

Effect of species diffusion velocity on mean drag of a size class

Effect of particle velocity distribution in a size-class

Effect of neighbor particles

All terms include effect of the presence of other size-class

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
Mean drag: Bidisperse (Equal Velocities)

\[m^\alpha d v_i^\alpha = -\beta^{\alpha \eta}_{(i)} \langle W_i | r = R_{\eta} \rangle dt - \gamma^{\alpha \eta}_{i j} v''^{(\eta)} dt + \sum_{i j}^{\alpha \eta} d \mathcal{W}_j^{\eta} \]

no relative velocity between size classes

\[F^*_D^{\alpha} = \frac{\left| \langle F \rangle_{D-\alpha} \right|}{3\pi \mu D_\alpha (1 - \phi) \left| \langle W \rangle | r = R_\alpha; t \rangle \right|} \]

Average drag force per particle

Express the mean drag in terms of an equivalent monodisperse suspension (Sauter mean diameter)

\[y_\alpha = \frac{D_\alpha}{\langle D \rangle} \]

No dependence on Reynolds number (Beetstra et al. AIChE J. 2007)

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
IBM Bi-disperse Simulations: Normalized force

IBM simulations indicate a dependence on Reynolds number

- **Re$_m$ = 20**
- **D$_2$/D$_1$ = 1.5, 2**
- **ϕ_2/ ϕ_1 = 1, 2, 3, 4**

- **Re$_m$ = 50**
- **D$_2$/D$_1$ = 1.5**
- **ϕ_2/ ϕ_1 = 0.5, 1, 2, 3, 4**

Vol. fraction = 0.2

Workshop on Multiphase Flow Science

Shankar Subramaniam, Iowa State U.
IBM Bi-disperse Simulations: Normalized force

Volume fraction = 0.3, 0.4

- $Re_m = 50$
- $D_2 / D_1 = 1.5$
- $\phi_2 / \phi_1 = 1, 2, 3, 4$

- $Re_m = 65$
- $D_2 / D_1 = 1.5$
- $\phi_2 / \phi_1 = 1, 2, 3, 4$

Magnitude of drag also is different at higher Reynolds numbers.
Current Efforts

1. Development of test particle simulations to extract coefficients of the Langevin model
2. Propose a new bi-disperse drag law at moderate Reynolds numbers
3. Data-driven exploration of the parameter space for DNS of polydisperse systems
4. Publication in preparation

Acknowledgements

• This work is supported by Department of Energy grant DE-FC26-07NT43098 through the National Energy Technology Laboratory

• Rahul Garg, Iowa State University
IBM Numerical convergence

\[\frac{L}{D} \]

\[F \]

\[\text{Re}_m = 20 \]
\[\phi = 0.3 \]

\[\text{Re}_m = 20 \]
\[\phi = 0.4 \]

\[D/\Delta x : 10, 20, 30 \]
\[MIS : 5 \]
IBM: Monodisperse Stokes Flow Regime

\[F_{D-mono}^* (\phi, 0) = \frac{10\phi}{(1-\phi)^2} + (1-\phi)^2 \left(1 + 1.5 \sqrt{\phi} \right) \]

Random arrays
Re=0.01
D/\Delta x : 10-40
L/D : 4-15
MIS : 5

Excellent agreement of IBM with LBM drag law in Stokes regime
Volume Fraction = 0.01

D / Δx = 10
L/D = 15
IBM: Monodisperse Moderately Dense Arrays

\[\frac{D}{\Delta x} = 30 \]
\[\frac{L}{D} = 5 \]
Fluctuating particle acceleration-velocity scatter

Note: some positive velocity fluctuations (less slip) result in positive acceleration fluctuations (more drag).

\[R_{em} = \frac{\rho_f (1-\phi) \langle W \rangle D}{\mu_f} \]
\[R_{eT} = \frac{DT^{1/2}}{\nu_f} \]

Dilute Stokes flow
Drag law forms: Bi-disperse (Equal Velocities)

van der Hoef et al

\[F^*_D - \alpha (\phi, 0) = y_\alpha F^*_D - \text{mono} (\phi, 0) \]

\[y_\alpha = \frac{D_\alpha}{\langle D \rangle} \quad \langle D \rangle = \frac{\sum_{\alpha=1}^2 N_\alpha D_\alpha^3}{\sum_{\alpha=1}^2 N_\alpha D_\alpha^2} \]

Yin et al

\[F^*_D - \alpha (\phi, 0) = \frac{1}{1 - \phi} + \left(F^*_D - \text{mono} (\phi, 0) - \frac{1}{1 - \phi} \right) \left[a y_\alpha + (1 - a) y_\alpha^2 \right] . \]
Drag law forms: Bi-disperse (Equal Velocities)

\[F^*_D - \alpha = F^*_D - \alpha (\phi, \text{Re}_m) \]

Mixture Reynolds number

\[\text{Re}_m = \frac{\rho_f (1 - \phi) |\langle \tilde{V} \rangle - \langle u^{(f)} \rangle| \langle D \rangle}{\mu_f} \]

Mass-weighted mean particle velocity

\[\langle \tilde{V} \rangle = \frac{\sum_{\alpha=1}^{2} \rho_\alpha \phi_\alpha \langle v \mid r = R_\alpha; t \rangle}{\sum_{\alpha=1}^{2} \phi_\alpha \rho_\alpha} \]

Beetstra et al

\[F^*_D - \alpha (\phi, \text{Re}_m) = y_\alpha F^*_D - \text{mono} (\phi, \text{Re}_m) \]
Drag law forms: Bi-disperse (Equal Velocities)

\[F_{D-\alpha}^* = F_{D-\alpha}^* (\phi, \text{Re}_m) \]

Mixture Reynolds number

\[\text{Re}_m = \frac{\rho_f (1-\phi) |\langle \tilde{V} \rangle - \langle u^{(f)} \rangle | \langle D \rangle}{\mu_f} \]

Mass-weighted mean particle velocity

\[\langle \tilde{V} \rangle = \frac{\sum_{\alpha=1}^{2} \rho_\alpha \phi_\alpha \langle v | r = R_\alpha; t \rangle}{\sum_{\alpha=1}^{2} \phi_\alpha \rho_\alpha} \]

Extension of Yin et al.’s drag law

\[F_{D-\alpha}^* (\phi, \text{Re}_m) = F_{D-\alpha}^* (\phi, 0) \left[1 + \alpha' (\phi, \text{Re}_m) \text{Re}_m \right] \]

Beetstra et al: Monodisperse drag law
Instantaneous particle acceleration model

\[dv_i = A_i^{(d)} dt + B_{ij} d\mathcal{W}_j \]

Langevin Model

\[dv_i = -\beta(i) \langle W_i \rangle dt - \gamma_{ij} v_j'' dt + \sum_{ij} d\mathcal{W}_j \]

Second moment of particle velocity

\[\frac{d}{dt} \langle v_i'' v_j'' \rangle = \sum_{ik} \sum_{jk} \gamma_{il} \langle v_j'' v_i'' \rangle - \gamma_{jk} \langle v_i'' v_k'' \rangle \]

\[m \frac{d}{dt} \langle v_i'' v_j'' \rangle = S_{ij,h} - \Gamma_{ij,h} \]

Sangani & Koch (1999)
Bidisperse Simulations: Resolution Requirements

- Smaller particles must be well resolved
 - Vol. fraction = 0.2, Re = 100, D/Δx = 30

- Box length should be large compared to larger diameter
 - L/D$_2$ = 6

- Number of larger particles must be large enough

Required box size: 3603: Need for parallel IBM
Schematic of domain decomposition
• Cyclic tridiagonal system of equations

• Previously used Gauss-Siedel: iterative solver
 – Bad for parallelization (Need to communicate in every iteration)

• Implemented direct solver based on Sherman-Morrison formula
 – Results in solving two tridiagonal systems

• Parallelized tridiagonal solver
 – Parallel partition algorithm (LANL)
Parallel IBM: Validation Study

\[
\epsilon_l = \frac{1}{M_x M_y M_z} \sum_{i=1}^{M_x} \sum_{j=1}^{M_y} \sum_{k=1}^{M_z} \left| Q_l^{(p)}(i, j, k) - Q_l^{(s)}(i, j, k) \right|
\]

<table>
<thead>
<tr>
<th>Configuration</th>
<th>(\frac{D}{\Delta x})</th>
<th>(\epsilon_1)</th>
<th>(\epsilon_2)</th>
<th>(\epsilon_3)</th>
<th>(\epsilon_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>46.4</td>
<td>0.63271616E-14</td>
<td>0.86949156E-16</td>
<td>0.88190940E-16</td>
<td>0.41440159E-14</td>
</tr>
<tr>
<td>FCC</td>
<td>29.24</td>
<td>0.23248653E-14</td>
<td>0.62514764E-15</td>
<td>0.62624656E-15</td>
<td>0.13055491E-14</td>
</tr>
<tr>
<td>Monodisperse</td>
<td>20</td>
<td>0.12112644E-11</td>
<td>0.79061513E-12</td>
<td>0.86040804E-12</td>
<td>0.57968924E-12</td>
</tr>
<tr>
<td>Bi–disperse</td>
<td>15</td>
<td>0.30301074E-15</td>
<td>0.89068307E-16</td>
<td>0.11269121E-15</td>
<td>0.65079639E-16</td>
</tr>
</tbody>
</table>

Validity of parallel IBM established: good for production runs