

Fluid-particle drag in polydisperse gassolid suspensions

William Holloway, Xiaolong Yin, and Sankaran Sundaresan NETL Workshop on Multiphase Flow Science Morgantown, WV 4/22/2009 8:40-9:00 am

Outline

- Breakdown of Princeton Tasks
- Bidisperse drag formulation
- Simulation procedures
- Low Re results
- Moderate Re results
- Summary

Princeton Tasks

Roadmap

Princeton Tasks

Roadmap

Task 2.2:

LBM/DTIBM simulations of flow through assemblies of binary particle mixtures where the two types of particles have non-zero relative velocities.

Princeton Tasks

Task 2.2:

LBM/DTIBM simulations of flow through assemblies of binary particle mixtures where the two types of particles have non-zero relative velocities.

Near-term:

 Develop drag relations that can handle particle size and density distributions; applicable over the entire range of solids volume fraction.

Roadmap

 Development of constitutive relations for continuum models from discrete models such as DEM or LBM.

Princeton Tasks

Task 2.2:

LBM/DTIBM simulations of flow through assemblies of binary particle mixtures where the two types of particles have non-zero relative velocities.

Near-term:

 Develop drag relations that can handle particle size and density distributions; applicable over the entire range of solids volume fraction.

Roadmap

 Development of constitutive relations for continuum models from discrete models such as DEM or LBM.

Mid-term:

 Consider the effect of lubrication forces in particle-particle interactions.

3/18

Fluid-particle drag vs. total force

Fluid-particle drag vs. total force

Bidisperse fluid-particle drag formulation:

$$f_{D1} = -\beta_{11} \Delta U_1 - \beta_{12} \Delta U_2$$
$$f_{D2} = -\beta_{21} \Delta U_1 - \beta_{22} \Delta U_2$$

Average fluid-particle drag per unit volume of suspension

Bidisperse drag formulation

$$f_{D1} = -\beta_{11}\Delta U_1 - \beta_{12}\Delta U_2$$

$$f_{D2} = -\beta_{21}\Delta U_1 - \beta_{22}\Delta U_2$$

$$\lambda \text{- lubrication cutoff}$$

$$\lambda \text{- lubrication cutoff}$$

$$\gamma \text{- lubrication cutoff}$$

Bidisperse drag formulation

$$f_{D1} = -\beta_{11}\Delta U_1 - \beta_{12}\Delta U_2$$

$$f_{D2} = -\beta_{21}\Delta U_1 - \beta_{22}\Delta U_2$$

$$\lambda - \text{lubrication cutoff}$$

$$\lambda - \text{lubrication cutoff}$$

$$\gamma = \lambda$$

$$\gamma = \lambda$$

$$\beta_{ij} = \beta_{ij}(\phi_i, \phi_j, d_i, d_j, \Delta U_i, \Delta U_j, \langle u_i^2 \rangle, \langle u_j^2 \rangle, \lambda)$$
low Re $\beta_{ij} = \beta_{ij}(\phi_i, \phi_j, d_i, d_j, \lambda)$
moderate Re $\beta_{ij} = \beta_{ij}(\phi_i, \phi_j, d_i, d_j, \Delta U_i, \Delta U_j, \lambda)$

Fluctuating particle velocities found to be small contribution to the fluid-particle drag force (Wylie and Koch, JFM (2003), vol. 480, pp. 95-118)

Numerical Method: Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice with no slip boundary conditions

LBM References:

 Generate initial configurations that satisfy binary hard sphere distribution.

Numerical Method: Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice with no slip boundary conditions

LBM References:

- Generate initial configurations that satisfy binary hard sphere distribution.
- Assign particles with velocities, but do not update particle positions. FROZEN SIMULATIONS (exact for Stokes flow, arguable for finite Re).

Numerical Method: Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice with no slip boundary conditions

LBM References:

- Generate initial configurations that satisfy binary hard sphere distribution.
- Assign particles with velocities, but do not update particle positions. FROZEN SIMULATIONS (exact for Stokes flow, arguable for finite Re).
- Apply pressure gradient to enforce a net zero flow rate of fluid.

Numerical Method: Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice with no slip boundary conditions

LBM References:

- Generate initial configurations that satisfy binary hard sphere distribution.
- Assign particles with velocities, but do not update particle positions. FROZEN SIMULATIONS (exact for Stokes flow, arguable for finite Re).
- Apply pressure gradient to enforce a net zero flow rate of fluid.
- Ensemble average multiple independent realizations.
- Solve for β_{ij}

Numerical Method: Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice with no slip boundary conditions

LBM References:

$$f_{D1} = -\beta_{11} \Delta U_1 - \beta_{12} \Delta U_2$$

$$f_{D2} = -\beta_{21} \Delta U_1 - \beta_{22} \Delta U_2$$

$$f_{D1} = -\beta_{11} \Delta U_1 - \beta_{12} \Delta U_2$$

$$f_{D2} = -\beta_{21} \Delta U_1 - \beta_{22} \Delta U_2$$

$$\beta_{12} = \beta_{21}$$

$$f_{D1} = -\beta_{11} \Delta U_1 - \beta_{12} \Delta U_2$$

$$f_{D2} = -\beta_{21} \Delta U_1 - \beta_{22} \Delta U_2$$

$$\beta_{11} + \beta_{12} = \beta_1 = -\frac{f_{D1-fixed}}{\Delta U}$$
 $\beta_{21} + \beta_{22} = \beta_2 = -\frac{f_{D2-fixed}}{\Delta U}$

$$\beta_{12} = \beta_{21}$$

Recovery of fixed bed drag when $\Delta U_1 = \Delta U_2$

$$f_{D1} = -\beta_{11} \Delta U_1 - \beta_{12} \Delta U_2$$

$$f_{D2} = -\beta_{21} \Delta U_1 - \beta_{22} \Delta U_2$$

$$\beta_{11} + \beta_{12} = \beta_1 = -\frac{f_{D1-fixed}}{\Delta U}$$

$$\beta_{21} + \beta_{22} = \beta_2 = -\frac{f_{D2-fixed}}{\Delta U}$$

$$\begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} = \begin{pmatrix} \beta_1 - \beta_{12} & \beta_{12} \\ \beta_{12} & \beta_2 - \beta_{12} \end{pmatrix}$$

$$\beta_{12} = \beta_{21}$$

Recovery of fixed bed drag when $\Delta U_1 = \Delta U_2$

$$f_{D1} = -\beta_{11}\Delta U_1 - \beta_{12}\Delta U_2$$
$$f_{D2} = -\beta_{21}\Delta U_1 - \beta_{22}\Delta U_2$$

$$\beta_{11} + \beta_{12} = \beta_1 = -\frac{f_{D1-fixed}}{\Delta U}$$
 $\beta_{21} + \beta_{22} = \beta_2 = -\frac{f_{D2-fixed}}{\Delta U}$

$$\begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} = \begin{pmatrix} \beta_1 - \beta_{12} & \beta_{12} \\ \beta_{12} & \beta_2 - \beta_{12} \end{pmatrix}$$

$$\beta_{12} = \beta_{21}$$

Recovery of fixed bed drag when $\Delta U_1 = \Delta U_2$

One free parameter

 $\Delta U_1 = \Delta U_2$ ('fixed bed') simulations: Extract β_1 and β_2 $\Delta U_1 \neq \Delta U_2$ ('moving suspension') simulations: Extract β_{12}

Low Re Bidisperse fixed beds

type i in a bidisperse fixed bed

Fixed bed friction coefficient

$$\beta_i = \frac{18\mu\phi_i(1-\phi)}{d_i^2} F_{Di-fixed}^*(\phi,y_i)$$
 Dimensionless drag force on particle of

Dimensionless size ratio

$$y_i = \frac{d_i}{\langle d \rangle}$$

Sauter mean diameter

$$< d> = \sum_{i=1}^{n} \frac{n_i d_i^3}{n_i d_i^2}$$

Drag law for bidisperse fixed beds

Drag in a monodisperse fixed bed

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$a = 1 - 2.660\phi + 9.096\phi^2 - 11.338\phi^3$$

$$F_{D-fixed}^* = \frac{10\phi}{(1-\phi)^2} + (1-\phi)^2(1+1.5\sqrt{\phi})$$

Yin and Sundaresan, AIChE J., accepted (2009) van der Hoef et. al., JFM, (2005), vol. 528, pp. 233-254

Refinement of original correction proposed by van der Hoef et al.

Drag law for bidisperse fixed beds

Drag in a monodisperse fixed bed

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$a = 1 - 2.660\phi + 9.096\phi^2 - 11.338\phi^3$$

$$F_{D-fixed}^* = \frac{10\phi}{(1-\phi)^2} + (1-\phi)^2(1+1.5\sqrt{\phi})$$

Refinement of original correction proposed by van der Hoef et al.

Yin and Sundaresan, AIChE J., accepted (2009) van der Hoef et. al., JFM, (2005), vol. 528, pp. 233-254

$$\frac{dP}{dx} = \frac{18\phi\mu\Delta U}{\langle d \rangle^2} \left(F_{D-fixed}^* + \frac{1}{1-\phi} \left(\frac{\sigma_I \sigma_{III}}{\sigma_{II}^2} - 1 \right) \right)$$

 σ_{II} , σ_{III} , and σ_{IIII} are first, second, and third order moments of a particle size distribution

Integrating over a continuous size distribution we can obtain the pressure drop through a polydisperse fixed bed

Low Re Bidisperse Fixed beds

Horizontal Axis:

 y_i

Vertical Axis:

$$\frac{F_{Di-fixed}^*}{F_{D-fixed}^*}$$

Average error: 3.9% Max error: 9.4%

Low Re bidisperse suspensions

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\frac{\beta_{12}}{\phi_1\phi_2} = -2\alpha \left(\frac{\frac{\beta_1}{\phi_1}\frac{\beta_2}{\phi_2}}{\frac{\beta_1}{\phi_1} + \frac{\beta_2}{\phi_2}}\right) \longleftarrow \text{ Harmonic mean}$$

Particle-particle interaction proportional to the probability of mutual contact

Low Re Bidisperse suspensions

eta_{12} is a linear function of the harmonic mean of $rac{eta_1}{\phi_1}$ and $rac{eta_2}{\phi_2}$

 $\lambda/d_1 = 0.005$

20

400

300

200

100

40

60

300 $\lambda/d_1 = 0.01$ 200 100 60 20 phi=0.20 × phi=0.30 ● phi=0.40 + mono phi= $0.20 \times \text{phi}=0.30 \bullet \text{phi}=0.40 + \text{mono}$

Horizontal Axis:

$$\left(\frac{\frac{\beta_1^*}{\phi_1}\frac{\beta_2^*}{\phi_2}}{\frac{\beta_1^*}{\phi_1} + \frac{\beta_2^*}{\phi_2}}\right)$$

Vertical Axis:

$$-\frac{\beta_{12}^*}{\phi_1\phi_2}$$

$$\beta_1^* = \frac{\beta_1 < d >^2}{\mu} \quad \beta_2^* = \frac{\beta_2 < d >^2}{\mu}$$
$$\beta_{12}^* = \frac{\beta_{12} < d >^2}{\mu}$$

$$\alpha\left(\frac{\lambda}{d_1}\right) = 1.313log_{10}\left(\frac{d_1}{\lambda}\right) - 1.249$$

Yin and Sundaresan, AIChE J., accepted (2009)

Simulations at finite Re

Frozen suspension at finite Re

Moving suspension at finite Re

 Inertial lag prevents fluid from adapting to particle motion instantaneously

Simulations at finite Re

Frozen suspension at finite Re

 Fluid adapts instantaneously to particle motion

Moving suspension at finite Re

 Inertial lag prevents fluid from adapting to particle motion instantaneously

Simulations at finite Re

Frozen suspension at finite Re

 Fluid adapts instantaneously to particle motion

Moving suspension at finite Re

 Inertial lag prevents fluid from adapting to particle motion instantaneously

Simulation procedure at finite Re

Must extrapolate frozen simulations to infinite resolution to get an accurate measure of the drag force in a moving suspension.

Simulation procedure at finite Re

Must extrapolate frozen simulations to infinite resolution to get an accurate measure of the drag force in a moving suspension.

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\beta_{i} = \frac{18(1-\phi)\phi_{i}\mu}{d_{i}^{2}}F_{Di-fixed}^{*} \qquad \frac{\beta_{12}}{\phi_{1}\phi_{2}} = -2\alpha\left(\frac{\frac{\beta_{1}}{\phi_{1}}\frac{\beta_{2}}{\phi_{2}}}{\frac{\beta_{1}}{\phi_{1}} + \frac{\beta_{2}}{\phi_{2}}}\right) \qquad \alpha\left(\frac{\lambda}{d_{1}}\right) = 1.313log_{10}\left(\frac{d_{1}}{\lambda}\right) - 1.249$$

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\beta_{i} = \frac{18(1-\phi)\phi_{i}\mu}{d_{i}^{2}}F_{Di-fixed}^{*} \qquad \frac{\beta_{12}}{\phi_{1}\phi_{2}} = -2\alpha\left(\frac{\frac{\beta_{1}}{\phi_{1}}\frac{\beta_{2}}{\phi_{2}}}{\frac{\beta_{1}}{\phi_{1}} + \frac{\beta_{2}}{\phi_{2}}}\right) \qquad \alpha\left(\frac{\lambda}{d_{1}}\right) = 1.313log_{10}\left(\frac{d_{1}}{\lambda}\right) - 1.249$$

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$F_{D-fixed}^* = \left(\frac{10\phi}{(1-\phi)^2} + (1-\phi)^2 (1+1.5\sqrt{\phi})\right)$$

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\beta_{i} = \frac{18(1-\phi)\phi_{i}\mu}{d_{i}^{2}}F_{Di-fixed}^{*} \qquad \frac{\beta_{12}}{\phi_{1}\phi_{2}} = -2\alpha\left(\frac{\frac{\beta_{1}}{\phi_{1}}\frac{\beta_{2}}{\phi_{2}}}{\frac{\beta_{1}}{\phi_{1}} + \frac{\beta_{2}}{\phi_{2}}}\right) \qquad \alpha\left(\frac{\lambda}{d_{1}}\right) = 1.313log_{10}\left(\frac{d_{1}}{\lambda}\right) - 1.249$$

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$F_{D-fixed}^* = \left(\frac{10\phi}{(1-\phi)^2} + (1-\phi)^2(1+1.5\sqrt{\phi})\right)(1+\chi_{BVK})$$

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\beta_{i} = \frac{18(1-\phi)\phi_{i}\mu}{d_{i}^{2}}F_{Di-fixed}^{*} \qquad \frac{\beta_{12}}{\phi_{1}\phi_{2}} = -2\alpha\left(\frac{\frac{\beta_{1}}{\phi_{1}}\frac{\beta_{2}}{\phi_{2}}}{\frac{\beta_{1}}{\phi_{1}} + \frac{\beta_{2}}{\phi_{2}}}\right) \qquad \alpha\left(\frac{\lambda}{d_{1}}\right) = 1.313log_{10}\left(\frac{d_{1}}{\lambda}\right) - 1.249$$

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$F_{D-fixed}^* = \left(\frac{10\phi}{(1-\phi)^2} + (1-\phi)^2(1+1.5\sqrt{\phi})\right)(1+\chi_{BVK})$$

$$\chi_{BVK} = \frac{0.413Re_{mix}}{240\phi + 24(1-\phi)^4(1+1.5\sqrt{\phi})} \frac{(1-\phi)^{-1} + 3\phi(1-\phi) + 8.4Re_{mix}^{-0.343}}{1 + 10^{3\phi}Re_{mix}^{\frac{-(1+4\phi)}{2}}}$$

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\beta_{i} = \frac{18\left(1-\phi\right)\phi_{i}\mu}{d_{i}^{2}}F_{Di-fixed}^{*} \qquad \frac{\beta_{12}}{\phi_{1}\phi_{2}} = -2\alpha\left(\frac{\frac{\beta_{1}}{\phi_{1}}\frac{\beta_{2}}{\phi_{2}}}{\frac{\beta_{1}}{\phi_{1}} + \frac{\beta_{2}}{\phi_{2}}}\right) \qquad \alpha\left(\frac{\lambda}{d_{1}}\right) = 1.313log_{10}\left(\frac{d_{1}}{\lambda}\right) - 1.249$$

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$F_{D-fixed}^* = \left(\frac{10\phi}{(1-\phi)^2} + (1-\phi)^2(1+1.5\sqrt{\phi})\right) (1+\chi_{BVK})$$

$$\chi_{BVK} = \frac{0.413Re_{mix}}{240\phi + 24(1-\phi)^4(1+1.5\sqrt{\phi})} \frac{(1-\phi)^{-1} + 3\phi(1-\phi) + 8.4Re_{mix}^{-0.343}}{1+10^{3\phi}Re_{mix}^{\frac{-(1+4\phi)}{2}}}$$

$$Re_{mix} = \frac{|\Delta U_{mix}| < d > (1-\phi)}{V}$$

Beetstra, van der Hoef, and Kuipers., (2007) AIChE J., vol. 53, pp. 489-501

$$f_{D1} = -\beta_1 \Delta U_1 - \beta_{12} (\Delta U_2 - \Delta U_1)$$

$$f_{D2} = -\beta_2 \Delta U_2 - \beta_{12} (\Delta U_1 - \Delta U_2)$$

$$\beta_{i} = \frac{18\left(1-\phi\right)\phi_{i}\mu}{d_{i}^{2}}F_{Di-fixed}^{*} \qquad \frac{\beta_{12}}{\phi_{1}\phi_{2}} = -2\alpha\left(\frac{\frac{\beta_{1}}{\phi_{1}}\frac{\beta_{2}}{\phi_{2}}}{\frac{\beta_{1}}{\phi_{1}} + \frac{\beta_{2}}{\phi_{2}}}\right) \qquad \alpha\left(\frac{\lambda}{d_{1}}\right) = 1.313log_{10}\left(\frac{d_{1}}{\lambda}\right) - 1.249$$

$$F_{Di-fixed}^* = \frac{1}{1-\phi} + \left(F_{D-fixed}^* - \frac{1}{1-\phi}\right) (ay_i + (1-a)y_i^2)$$

$$F_{D-fixed}^* = \left(\frac{10\phi}{(1-\phi)^2} + (1-\phi)^2(1+1.5\sqrt{\phi})\right) (1+\chi_{BVK})$$

$$\chi_{BVK} = \frac{0.413Re_{mix}}{240\phi + 24(1-\phi)^4(1+1.5\sqrt{\phi})} \frac{(1-\phi)^{-1} + 3\phi(1-\phi) + 8.4Re_{mix}^{-0.343}}{1+10^{3\phi}Re_{mix}^{\frac{-(1+4\phi)}{2}}}$$

$$Re_{mix} = \frac{|\Delta U_{mix}| < d > (1-\phi)}{\nu} \qquad \Delta U_{mix} = \frac{1}{\phi} \sum_{i=1}^{n} \phi_i \Delta U_i$$

Beetstra, van der Hoef, and Kuipers., (2007) AIChE J., vol. 53, pp. 489-501

Finite Re bidisperse suspension data

 $\Phi = 0.4$

Remix range: 0-40

 Φ_1 : Φ_2 range: I-3

d₁:d₂ range: I-2

Re₁:Re₂ range: -1:3

Horizontal axis: Simulated f_{Di}* Vertical axis: Predicted f_{Di}*

Average error: 5%

Max error: 25%

Holloway, Yin and Sundaresan, (in preparation)

Looking ahead

- Combine LBM results at moderate Re together with IBM results from Subramaniam group at higher Re.
- Perform freely evolving bidisperse simulations to investigate particle-particle collisional interactions in sedimenting systems.

Summary

- Fluid-particle drag relation developed that accurately predicts fluid-particle drag in Stokesian suspensions with particle-particle relative motion and size differences.
- Drag relation extended to account for moderate fluid inertia in bidisperse suspension flows.

Acknowledgements

- US Department of Energy
- ExxonMobil Corporation
- ACS Petroleum Research Fund