Development of Alumina-Forming Austenitic (AFA) Stainless Steels

Michael P. Brady, <u>Yukinori Yamamoto</u>, Michael L. Santella, Hongbin Bei, and Philip J. Maziasz

> Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN

Contacts: bradymp@ornl.gov or yamamotoy@ornl.gov

"23r^d Annual Conference on Fossil Energy Materials," at Pittsburgh, PA May 12-14, 2009

Stainless Steels with Higher-Temperature Capability Needed

- Driver: Increased efficiencies with higher operating temperatures in power generation systems.
- Key issues are creep and oxidation resistance.
 - Significant gains have been made in recent years for improved creep resistance via nano MX precipitate control (M = Nb, Ti, V; X = C, N).
 - Stainless steels rely on Cr₂O₃ scales for protection from hightemperature oxidation.
 - -Limited in many industrial environments (water vapor, C, S)
 - -Most frequent solution is coating: costly, not always feasible

Development Effort for Low Cost, Creep and Oxidation-Resistant Structural Alloy for Use from ~600-900°C

- Approach: Al₂O₃-forming austenitic stainless steels

 background and potential advantages
- Current alloy status for microstructure, mechanical properties, and oxidation resistance

> Tubing in chemical/process industry, etc. also targeted.

Al₂O₃ Scales Offer Superior Protection in Many Industrially-Relevant Environments

- AI_2O_3 exhibits a lower growth rate and is more thermodynamically stable in oxygen than Cr_2O_3 .
- Highly stable in water vapor.

Challenge of Alumina-forming Austenitic (AFA) Stainless Steel Alloys

- Numerous attempts over the past ~30 years (e.g. McGurty et al. alloys from the 1970-80's, also Japanese, European, and Russian efforts)
- Problem: Al additions are a major complication for strengthening
 - strong BCC stabilizer/delta-ferrite formation (weak)
 - > interferes with N additions for strengthening
- Want to use as little AI as possible to gain oxidation benefit
 - keep austenitic matrix for high-temperature strength
 - introduce second-phase (intermetallics/carbides) for precipitate strengthening

Composition and Microstructure Considerations for AFA Stainless Steels

Typical Fe-(20-30)Ni-(12-15)Cr-(2.5-4)Al-(1-3)Nb-0.1C wt.% Base AFA Alloy Microstructure After Creep

•Creep Strength

- balance AI, Cr, Ni, to maintain single-phase FCC austenitic matrix
- Nano NbC and submicron B2-NiAI + Fe₂Nb base Laves precipitates
- •To form protective alumina:
 - Ti+V < 0.3 wt.%; Nb > (0.6-1) wt.%; N < 0.02 wt.%

AFA Exhibits Comparable Creep Strength to Best Commercial Austenitic Stainless Steels

- AFA alloys (20Ni) are in the range between alloy 709 (Fe-20Cr-25Ni base) and alloy 617 (Ni-22Cr-12Co-9Mo base)
- AFA data from small (< 1 kg) laboratory arc-castings, sub-sized screening creep test sample, solution treated + 10% cold work condition 7/22

50 Ib AFA Trial Heat Made by Conventional Vacuum Melting and Hot Rolling Processes

- Fe-20Ni-12Cr-4AI-0.6Nb-0.1C base wt.% composition
- Material used for rigorous creep evaluation with standard specimen design, solution treated condition (no cold work) (collaboration w/J.P. Shingledecker)

Comparable Creep Strength to that Obtained in Screening Studies

(Hot-rolled + Solution heat-treated, no cold-work applied)

Ductile Creep Rupture at Failure

(Most of the gage portions showed just tinted color even after >6000h testing)

Intermetallics Appeared in Early Stage of Creep-testing

11/22

Austenite Matrix and NiAl Precipitates Key to Establishing and Maintaining Alumina

SEM-BSE Images of Typical Oxidized Cross-Section for a 4 AI wt.% AFA Alloy (900°C/100h/in air)

- Austenite matrix composition key to forming alumina
- NiAl precipitates act as Al reservoir to maintain alumina

Higher Nb in Alloy Favors Better Oxidation Resistance in Air + Water Vapor

Oxidation at 650°C in Air + 10% Water Vapor

 Excellent resistance out to ~8000 h of ongoing exposure
 -347 stainless steel shows accelerated attack after a few hundred hours under these conditions

Increased Nb or Hf/Y Additions Aide Al₂O₃ Formation at 800°C in Air + Water Vapor

Oxidation at 800°C in Air + 10% Water Vapor

•Best alloys still showed transition to Fe oxide nodule formation and mass loss

-upper temperature limit 700°C < t < 800°C in H_2O for these alloys

Hypothesized Microstructural Benefits of Nb for Improved Oxidation Resistance

- •Nb increases relative Cr + Al levels in austenitic matrix to help form Al_2O_3 -Cr aides formation of alumina via third-element effect
- •Nb increases B2-NiAl precipitate volume fraction (Al reservoir for Al₂O₃ scale)
- •Insights used to design next iteration of AFA for higher service temperature

Thermodynamic Calculations Predict Al-Cr-Ni Balance for Austenite and σ

Fe-Cr-Ni-Al-1Nb-2Mo-0.1C (wt%)

Higher Cr levels possible at 4 Al and 25 Ni than early 4AI-12Cr alloy series
Increased sigma risk w/decreasing temperature below 800°C

-counter balance with lower Mo, Nb, and W

Recent High AI and Cr AFA^{HP} Alloys Show Promise to 900°C in Air + 10% H_2O

Cyclic Oxidation (10 h cycles) at 900°C in air + 10% H_2O

•AFA^{HP}: Fe-25Ni-(14-15)Cr-4Al-2.5Nb-Hf/Y wt.% base -Good 900°C behavior also observed at 3-3.5Al wt.% and no Hf/Y addition

•Better resistance than more expensive HR120 (~Fe-35Ni-25Cr) and Ni-base alloys 625 and 617 under this test condition

Room-Temperature Tensile Evaluation as a Function of 750°C Ageing Time

Fe-(20-25)Ni-(3-4)Al-1Nb base wt.% Alloys Evaluated at Room Temperature After Ageing at 750°C

At room temperature:

- •Yield strengths reach maximum after ageing ~ 50 hour at 750°C
- Elongation to fracture decreases with ageing: ~10-20% elongation retained

Little Effect of 750°C Ageing on Tensile Behavior at 750°C

- Lower yield/ultimate strength at 750°C than at room temperature
- Elongation unaffected by ageing

Summary

- A new class of Fe(Ni)-base, Al₂O₃-forming, high creep strength austenitic stainless steel alloys is under development
- Excellent oxidation resistance observed in air + H₂O

 -All AFA alloys have upper-temperature limit for Al₂O₃ formation (consequence of low Al + Cr to also achieve mechanical properties)
 ~650-900°C in air + H₂O depending on alloy composition
- Promising mechanical properties

-Creep resistance comparable to best available austenitics
-High tensile elongation in solution treated condition
-10-20% ambient tensile elongation retained on ageing
-trial heats show good properties comparable to lab scale castings

Future Work

- •Spin-off demonstration project under EERE for AFA foil in turbine recuperator applications (3 CRADAs signed)
- •Continued AFA development under Fossil (funding permitting) -linked experimental and modeling efforts directed toward improved understanding of AFA microstructure, oxidation, and creep to provide basis for further alloy development
 - -long-term studies of creep and oxidation to provide basis for transition to industry
 - -expand and evolve AFA concept towards development of alumina-forming, Fe-base superalloys

Acknowledgments

The Office of Fossil Energy, U.S. Department of Energy, National Energy Technology Laboratory, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC, and The SHaRE User Facility in Oak Ridge National Laboratory, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy.

Three Grades of AFA Alloys Identified Thus Far

•AFA Grade: Fe-(20-25)Ni-(14-15)Cr-(2.5-3.5)Al-(1-3)Nb wt.% base

- ~750-800°C temperature limit for AI_2O_3 formation
- Trial heats with commercial alloy producer

•High Performance AFA^{HP} Grade: Fe-(25-30)Ni-(14-15)Cr-(3.5-4.5)Al-(1-3)Nb + Hf/Y wt.% base - ~850-900°C temperature limit for Al₂O₃ formation

•Low Nickel AFA^{LN} Grade : Fe-12Ni-14Cr-2.5Al-0.6Nb-5Mn-3Cu wt.% base

- ~650°C temperature limit for AI_2O_3 formation

Temperature Limit Based on Oxidation in Air + 10% H₂O (~100°C) Higher-Temperature Oxidation Limit in "Dry" Air

Trial Heat of AFA Alloy Readily Welded

Gas Tungsten Arc Weld

(used same alloy as a filler material)

• No crack appears at fusion/heat-affected zones

Thermodynamic Calculation Results (750°C)

Alloy	750°C composition in austenite phase					750°C Calculated Phase Vol.%			
	Cr	AI	Ni	Nb	C	MC	Fe ₂ Nb	NiAI	
2-0.2	13.67	2.23	20.28	0.008	0.0618	0.07	1.66	1.49	Nb in the alloys
2-0.9	14.52	2.11	19.64	0.012	0.0179	0.66	2.14	2.7	(wt%)
3-0.4	14.55	2.21	19.24	0.005	0.0384	0.4	2.24	4.71	← 0.4
3-0.6	14.53	2.21	19.21	0.006	0.0337	0.59	2.29	4.65	← 0.6
3-1	14.86	2.15	19.10	0.008	0.0199	0.76	2.53	4.97	← 1.0
3-1.5	15.38	1.91	18.42	0.026	0.0065	0.79	3.09	6.82	← 1.5
3-2.5	15.72	1.67	18.29	0.064	0.003	0.78	4.58	8.25	← 2.5
4-1 ^{LNi}	12.91	2.20	16.60	0.005	0.0188	0.64	2.4	10.68	

Fe-Rich Oxide Nodules + Extensive Internal Attack of AI When AFA Alloys Go "Bad" in Air + H₂O

Optical Cross-Section of Fe-20Ni-14Cr-3Al-1.5Nb wt.% base after 1600 h at 800°C in Air + 10% Water Vapor

- •Raising temperature/adding water vapor favors transition to internal attack (transition temperature varies with composition)
- •AFA alloys near borderline for Al₂O₃ formation to co-optimize mechanical properties

After Cyclic Oxidation at 800°C in Air + H₂O

3AI-1.5Nb-14Cr

(1600h)

3AI-2.5Nb-14Cr

(5700h)

AFA^{HP} Significantly Lower <u>Raw Material</u> Cost to High-Ni Austenitics/Ni-Base Alloys

•AFA^{HP} grade estimated comparable raw material cost to stateof-art austenitics such as alloy 709 (Fe-25Ni-20Cr base)

B2 NiAl Precipitation on Ageing AFA 5 (Fe-20Ni-12Cr-4Al-1Nb wt.% base)

• NiAl precipitation after 50 h at 750°C

Coarsening of NiAl reached mostly completed after ~500 h at 750°C

Creep Curves Also Showed Necking Instability

- Acceleration creep started after only ~3% creep-deformation.
- Necking instability causes accelerating stress concentration.