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US Inputs UK Inputs

NPL

+ Collation of published data
* Atmospheric P & HP testing
+ Oxidation modelling

ORNL

+ Compilation of kinetic data

* Atmospheric P & HP testing

+ Morphological evolution in
support of spallation modeling

Published Data

A

Cranfield

* Atmospheric P & HP testing

* Spallation evaluation &
modelling

Oxidation Database

Doosan-Babcock
 Advice on materials/conditions
+ Ex-service materials/data

NETL
* Atmospheric P & HP testing
+ Spallation modeling

Inputs for modeling:
» metal loss
* scale spallation

Alstom
+ Advice on materials/conditions

A
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» Establish current ‘state-of-knowledge’ of steam oxidation of alloys relevant to
fossil-fueled advanced steam power plant

* Collate and analyse existing information to identify missing critical data
* Generate critical kinetic data as required

« Compile mechanistic descriptions of scale exfoliation behaviour for specific alloy
classes

* Develop models for component lifetime prediction, especially scale exfoliation
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* Large body of data, but little in the way of coherent picture even for a single alloy
class

« Steam oxidation is complex: need to define key factors and understand their

influences
— thick scales; interaction among oxide growth and stress-strain development
— difficult to reproduce service conditions

* Influence of factors not usually considered in oxidation studies
— thermal gradients
— thermal conductivity
— physical constraints

* Potentially large differences among research groups
— little prior attention given to differences among test techniques

* For key alloys, subtle differences in composition can exert large influence
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ENVIRONMENTS ALLOYS

e Steam *Ferritic steels
—1 bar, 650-800°C — 9-12Cr ferritic-martensitics
—17 bar, 100 bar, 600-800°C — developmental 9-12 Cr
— 40 bar, flowing steam Austenitic steels

* Ar-water vapor — 18Cr-12Ni (‘advanced’: TP347-based)
—1 bar, 650-800°C — higher-Cr steels

« Air-water vapor *Ni-based alloys
—1 bar, 650-800°C — conventional (solid soln-strengthened)
—Isothermal & cyclic — advanced (pptation-strengthened)

Over 1 million hours of steam oxidation data have been generated,
covering 30 alloys and a range of temperatures
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— outer layer is Fe;0, in lab test, Fe,0, in plant
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« Difficult to duplicate USC steam turbine conditions in the laboratory
« Air-water vapor mixtures provides evaporation effects
« NETL developed a model to relate rate of Cr loss to lifetimes of Cr-forming alloys

) 760°C
- |

- USC Turbine Rotating Disk Rotating
o D Ar + HO, 40 m/s—\ Disk
T 8| USCHP .
£ ) Cyclic
3 o9 Steam Turbine, 300 /s Furnace
3 -10 -
X Laboratory
g -11 Air + HO, 0.002 /s
- 12 | Laboratory

Steam
_13 I I [
-6 -5 -4 -3 -2 -1 0

Log(P : :
9(Pc2) Evaporation at a maximum

_ _ _ at 57% H,O
* Air-wv as a substitute for high-pressure steam?

» Need to better understand differences _ _ _
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« Many contributing factors need thorough evaluation:
— oxide growth in a thermal gradient
— oxide growth during thermal cycling
— strain development during oxide grown on the inside of a tube
— strain resulting from differences in CTE between oxide and alloy
— contribution to strain development from oxide growth
— effect of creep (alloy and oxide) on stress relaxation
— strain distribution in multi-layered scales
— criteria for scale failure (exfoliation?)
— external parameters determined by the boiler operation
* Importance of reliable oxidation kinetics
« Evolution of scale morphologies key to stress-strain accommodation & scale failure

* NPL and ORNL are developing models using these inputs
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* Develop a unified test method with a view to future standardization

* Better understanding of:
[ factors causing uncertainty in metal loss and oxide thickness data from lab. exposures
[I effect of steam pressure on oxidation kinetics and scale morphology

* Measure oxidation kinetics of alloy T91 for compositions within the full
specification range
— provide a measure of the scatter likely from different alloy melts

 Understand the effects of specimen geometry and heat flux

* Further develop and validate models for:
— oxidation kinetics when accompanied by chromia evaporation
— scale exfoliation
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Mechanistic input: 9Cr BT ance

Measurement of Cr concentration profile--basis for understanding
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