Improving the Performance of Creep-Strength-Enhanced Ferritic Steels

Mike Santella

May 12, 2009 23rd Annual Conference on Fossil Energy Materials Pittsburgh, PA

Purpose is to build fundamental understanding needed to increase operating temperatures

Specific goals include:

- Improving the structural performance of creep-strengthenhanced ferritic steels (9-12Cr-Mo steels)
- Provide science-based guidelines for maximizing safe operating temperatures
- Understand the fundamental causes of current temperature limitations
- Develop approaches for increasing practical operating temperatures

Activities combine basic & applied R&D with strong power industry interactions

- CRADA with Alstom Power, Inc. "Analysis of Off-Normal Metallurgical Conditions on the Performance of Advanced Cr-Mo Steels"
- Collaboration with National Institute for Materials Science (NIMS), Japan - "*Mechanisms of Type IV Weld Failures in Cr-Mo Steels*"
- Involvement with materials issues relating to the ASME Boiler and Pressure Vessel Code (Section II: Materials)
- Technical support for DOE/OCDO Ultrasupercritical Steam Boiler Consortium not included in defined ORNL Tasks
- MOA with Central Research Institute of Electric Power Industry (CRIEPI), Japan - "Joint Research on Properties of Alloy 263 and 263 Weldments"

Milestones/Progress:

- FY2009
 - Complete design of a furnace and a plan to install it on a loading frame at the High-Flux Isotope Reactor neutron diffraction beam line

Status: Suspended due to funding constraints

 Prepare a technical paper manuscript or CRADA report related to control of alloy composition and heat treatment Status: On-schedule

Long-time properties may not meet projections from short-time data

- Type IV failure of Cr-Mo steel welds is due to weakened microstructures in HAZs
- Unexpected behavior that causes unscheduled, premature utility outages

Experimental 9Cr steels developed at NIMS appear resistant to Type IV failure

N130B: 0.077C-0.49Mn-0.30Si-8.97Cr-0.046Nb-0.18V-

2.87W-2.91Co-0.0015N-0.013B

P92 (ref.): 0.09C-0.47Mn-0.16Si-8.72Cr-0.06Nb-0.21V-

1.87W-0.45Mo-0.050N-0.002B

Key features of N130 B – low N, high B

19-May-09 Improving the Performance of Creep-Strength-Enhanced Ferritic Steels

Heating to low peak temperatures transformed P92 rapidly to high fraction of austenite

• Result: 15% untransformed α , 22% new α , 60.4% new α' , 2.3% γ

Heating to low peak temperatures retained a high fraction of untransfomed α in N130B

• Result: 56% untransformed α , 21% new α , 23% new α' , 0% γ

Microstructures were consistent with diffraction data at low HAZ peak T's

N130B

- $T_{Peak} = 911^{\circ}C (A_3 = 860^{\circ}C)$
- 56% untransformed α , 21% new α , 23% new α' , 0% γ
- *H_V* = 2.57 GPa

- $T_{Peak} = 896^{\circ}C (A_3 = 893^{\circ}C)$
- 15% untransformed α, 22% new α, 60.4% new α', 2.3% γ
- *H_V* = 4.02 GPa

Carbide dissolution in N130B was also sluggish

	Predicted M ₂₃ C ₆ Composition, at%								
Alloy	Fe	Cr	Со	Mn	Мо	V	W	В	С
N130B	23.3	53.1	0.3	0.6		0.6	1.4	3.9	16.8
P92	21.6	50.8		0.8	3.5	0.6	2.1	0.08	20.6

Summary:

- For low HAZ peak temperatures, < ~ 980°C, neither steel transformed completely to austenite
 - Both contained untransformed ferrite with greater amounts in N130B
 - During cooling, new ferrite appeared in both
 - For similar conditions, N130B contained lesser amounts of new martensite
- For similar conditions, N130B retained less γ (if any)
- Dissolution of M₂₃C₆ in N130B was also sluggish, possibly due to B content

Do these differences influence properties? How? Why?

Milestones/Progress:

- FY2010
 - Initiate creep testing of specimens subjected to simulated heat-affected zone heat treatments during synchrotron diffraction
 - Status: On-schedule
 - Heat treatments/diffraction experiments are complete
 - Data is being analyzed
 - Preferred creep specimen geometry is under discussion

CSEF steels must be heat treated as specified to achieve desired properties

- CRADA with Alstom Power, Inc. "Analysis of Off-Normal Metallurgical Conditions on the Performance of Advanced Cr-Mo Steels"
 - Can these heat treatments be accepted without compromising creep properties of 9Cr steel :
 - Tempering for exceptionally long times (100 h-vs-2 h)?
 - Tempering in α + γ phase field under any circumstances?
 - Slowly cooling from austenitizing temperatures in N + T?
 - Holding metal for long times at ~ 500°C during cooling from normalizing treatments?
 - How does one know these have *not* been done?

Real-time diffraction from 9Cr steel Ht 30176 during slow cooling from 1050°C

- Austenite begins transforming to ferrite between ~ 770-870°C
- Result is martensite + ferrite rather than ferrite
- Creep properties are not likely to be as desired

Improving the Performance of Creep-Strength-Enhanced Ferritic Steels

Creep-fatigue loading dramatically reduces life of nickel-based alloys

(a) Aged, 750°C, 216hr

(c) Creep, 750°C, 180MPa, 3013.1hr

(b) Fatigue, 750°C, 0.7%, 2070Cycles

(d) Creep-fatigue, 750°C, 0.7%, TH6min, 737Cycles 200μm

 MOA with Central Research Institute of Electric Power Industry (CRIEPI), Japan -*"Joint Research on Properties of Alloy 263 and 263 Weldments"*

Rotation of atomic planes near grain boundaries increases strain concentration

- 15 degrees rotation within 10 microns from GB in creep-fatigue condition
 - High dislocation density
 - High mismatch of strain
- Concentration of "creep deformation" near the GB is likely cause of remarkably low life, intergranular failure in C-F conditions

Source: Dr. Masato Yamamoto, CRIEPI, Japan, from work done at ORNL

Improving Performance of CSEF Steels and Ni-based Alloys

Highlights:

- Using advanced tools like APS to better understand new highperformance alloys
 - Collaboration with NIMS, Alstom CRADA
- Leveraging resources to investigate ways to increase performance of Ni-based alloys
 - Collaboration with CRIEPI
- Using unique capabilities and fundamental understanding to assist ASME and manufacturers in better informed use of CSEF steels and Ni-based alloys
 - Using computational thermodynamic analysis to enable more robust alloy specifications
 - Supporting component design and reliability with testing and analysis of mechanical behavior

