

UK/US Collaboration in Energy R&D: Clean Coal Technology

Advanced Materials Program

John Oakey and Ian Wright

Outline

- Background
- Why Collaborate?
- Collaboration Framework
- Phase 1 Tasks Outputs and Benefits
- Plans for Phase 2

Background 1

MOU Renewal

- Under discussion 1999 2000
- Signed 6th November 2000
- Materials identified as a priority topic for collaboration

DOE/DTI Workshop

- Held in Knoxville, Tennessee in June 2001
- Workshop identified many topics of common interest where collaboration would be possible
- Text for Implementing Arrangement revised
- Materials, Virtual Plant Demonstration, Near-zero Emission Power Plants,
 CO₂ Capture & Sequestration, Distributed Generation listed as 'tasks' to be developed

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
		Δ	Δ											

Background 2

Implementing Arrangement for Fossil Energy RTD

- Signed 10th March 2003
- Sets a framework for collaborative 'tasks' with named UK and US leaders
- Followed up with workshop at NETL, Pittsburgh in June 2003
- Agreed to proceed with collaborative tasks on Materials and Virtual Plant Simulation
- Draft tasks prepared at the workshop

Framework for Materials Collaborative Task

- Contributions from nationally-funded public domain research
- Task proposals define equitable research collaboration
- Detailed work program aligning UK and US activities to maximise exchanges and benefits
- Exchange and sharing methodology based on EU COST Program

Collaboration starts April 2004

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012

Why Collaborate?

Increased specialist

knowledge pool

UK

Improved vision of industrial needs and national strategies

Critical review of methods & results

Access to unique facilities

Less time to develop design & modelling capability

US

Highly cost effective - small extra cost

Reduced risk of wasted effort

Improved confidence in outputs

Improved quantity & quality of data

USDOE FE Materials Conference – 12-14 May 2009 US-UK Collaboration on Fossil Energy R&D - Advanced Materials

EU COST Program

UK/US Collaboration on Advanced Materials

Phase 1 Tasks

All tasks aimed at increased plant efficiency and reduced emissions

- Steam Oxidation
- Boiler Corrosion & Monitoring
- Gas Turbines Fired on Syngas and Other Fuel Gases
- Oxide Dispersion-Strengthened (ODS) Alloys
- Standards & Databases

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
		Δ	Δ		Δ	ΔΔ	ΔΔ	ΔΔ	ΔΔ	ΔΔ	Δ			

Steam Oxidation

Why?

- Advanced steam cycles = increased efficiency = increased temperature
- New alloys needed to achieve these goals
- Need basis for confident service life prediction

- Higher temperatures = reduced lifetime
- No reliable design data
- Potential failure modes unknown

Steam Oxidation

Outputs & Benefits

- New testing capabilities
- >1m hours of specimen exposures
- Tools for data qualification & extrapolation
- New degradation models

Proposed Work Plan (Phase 2)

- Standardized testing approach
- Correlate lab. data to plant experience
- Lifetime model development

Boiler Corrosion & Monitoring

Why?

- Alternative fuels, emission controls, advanced cycles increase operating risks
- Understand impact on materials performance
- On-line condition monitoring to improve plant operation

- Quantify specific fuel effects on materials behavior
- Develop reliable monitoring techniques
- Correlate lab. data to plant experience

Boiler Corrosion & Monitoring

Outputs & Benefits

- Ranked alloys in simulated operating environments
- Established limitations of current probe designs
- Identified approaches for monitoring probe design improvements

Proposed Work Plan (Phase 2)

- Advanced lab. testing procedures
- Further development of corrosion monitoring probes (electrochemical)
- Emphasis on oxy-firing, co-firing, advanced cycles

Gas Turbines Fired on Syngas and other Fuel Gases

Why?

- Enable the use of SOA GTs with fuels derived from gasification of coal and/or biomass
- Understand impact on critical hot gas path components
- Ensure reliable operation and reduce risk

- Understand and predict threat from these combustion environments
- Provide a versatile simulation testing facility
- Quantify impact on alloy and coating performance
- Identify cost-effective alloy and coating combinations to reduce operational risks

Gas Turbines Fired on Syngas and other Fuel Gases

Outputs & Benefits

- Demonstrated ability to correctly simulate plant environments
- >650,000h of specimen exposures
- Validated predictions of damage modes
- Predicted component lives for plant systems

Proposed Work Plan (Phase 2)

- Expansion of life predictions to new systems
- Generation of input for GT life prediction models
- Integration with advanced NDE techniques

ODS Alloys

Why?

- Class of materials with exceptional characteristics, but challenges to practical application
- Opportunity for step change in performance of existing and new plant components

- Need for better joining techniques
- Processing for improving strength of tubes
- Improved oxidation resistance

ODS Alloys

Outputs & Benefits

- Identified viable joining techniques
- Commercial processing routes for strength improvement
- Identified coating for improved hightemperature service life
- Proposed Work Plan (Phase 2)
- Qualify new commercial ODS alloy
- Alternative processing routes for strength improvement
- Fabricate demonstration components
- Explore novel process for making components from ODS alloys

Standards & Databases

Why?

- Need test results from different partners to be directly comparable
- Need ability to share and compare data and testing methods among different laboratories

- System for data collection, analysis, and exchange
- Ensure full and consistent record keeping
- Enable full, future replication of testing

Standards & Databases

Outputs & Benefits

- Identified sources of differences in data among tests by partners
- Standardized approaches
- Developed a full-featured database
- Provided secure, central access to all partners

Proposed Work Plan (Phase 2)

Task completed, separate future activities not required

Summary of Phase 1 Experience

- Accelerated progress in complex areas
- Extensive and faster data development
- Effective working relationships to face new challenges
- Shared experience improves outputs and reduces risks
- Awareness of current testing limitations
- Formulation of new approaches
- Effective benchmarking and data qualification
- Improved awareness of industrial needs and national priorities

Approved Phase 2 Tasks

- Steam Oxidation
- Materials for Advanced Boilers and Oxy-Combustion Systems
- Gas Turbine Materials Life Assessment and Non-Destructive Evaluation
- Oxide Dispersion-Strengthened Alloys

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
		Δ	Δ		Δ	ΔΔ	ΔΔ	ΔΔ	ΔΔ	ΔΔ	Δ			

More Information

Thank you for your attention

http://us-uk.fossil.energy.gov/

