

Computational and Experimental Development of Novel High Temperature Alloys

Matthew J. Kramer, Pratik Ray, Mufit Akinc

Ames Laboratory Department of Materials Science and Engineering Iowa State University

23rd Annual Conference on Fossil Energy Materials May 12-14, 2009

The Problem

- Increasing efficiency require higher operating temperatures
 - Loss in creep strength
 - Dramatic Increase in oxidation rates
- Coal combustion environment
 - Highly Variable
 - H_2O , HS, NO_x etc.
 - Particulate erosion
- Cost of materials
 - Balance of down-time vs lifetime
 - i.e., are Ni-based alloys worth the cost?
- Are there better materials systems?
- Are there more effective ways of tweaking existing systems

- Large region of the potential phase space unexplored
 - Edisonian approach is not an option
 - Computational Thermodynamics
 - Extrapolation of known thermodynamic data
 - Can easily handle multidimensional phase space
 - Large lead time for database development
 - Ab initio
 - Precise formation enthalpies
 - At 0 K
 - No entropic information
 - Density of States
 - What phases could form
 - Need to know what compounds are of interest!
- Approximate methods
 - Miedema

Conceptual Approach

- No one methodology will work in all circumstances
 - Utilize less rigorous computational methods as an initial screening tool
 - More accurate methods as phase space is refined
- Respect the researcher's intuition and experience
- Utilized the existing knowledge base
- Critical metrics (experiments) are required for validation

Hierarchical Evaluation

- Rapid Screening of potential systems
 - High melting temperature
 - i.e., high formation enthalpies
 - Elements comprising the major weight fraction should be low cost
 - Matrix should be a refractory metal with BCC or FCC
 - Strength and ductility
 - Contain a 'reservoir' for passivating components
 - Al, Cr, Si

Hierarchical Evaluation

- Rapid approximant methods
 - –Less precise but quickly eliminate most likely 'dead-ends'
- Refining Steps
 - -Higher degree of precision
 - –Identify critical experiments
- Utilize relative strengths of many techniques
 - -i.e., ab initio and Calphad

Initial screening of Alloy systems – the two-phase base alloy system

The need for speed

Number of elements	Possible combinations
2	3160
3	82160
4	1.58 x 10 ⁶
5	2.40 x 10 ⁷
6	3.00 x 10 ⁸
7	3.18 x 10 ⁹
8	2.90 x 10 ¹⁰
9	2.32 x 10 ¹¹
10	1.65 x 10 ¹²

- Say, for a 4 element Ni-Al based system, with 2 elements from TM block – 406 combinations
- 5 elements 3654 combinations
- 6 elements 23751
- Within these, there are compositional variations

Exploring a vast phase space using an Edisonian approach is not efficient

Miedema Model

- Developed to predict formation enthalpies of binary compounds
 - Assume metals are in their standard state
 - Macroscopic view of alloying
 - Not an atomistic approach
 - Interfacial energy between the two metals is ~ their liquid heat of formation
 - Formation energy is ~ contact interaction between the two metals
- Can this be extended to ternary and higher systems

The ternary Miedema

The total formation enthalpy:

 $\Delta H = \phi_1 \Delta H_{AB}(\alpha) + \phi_2 \Delta H_{BC}(\beta) + \phi_3 \Delta H_{CA}(\gamma)$

Enthalpy of the binary systems computed using Miedema's model

$$\sum_{i=1}^{3} \phi_i = 1$$

$$\phi_1 \alpha + \phi_3 (1 - \gamma) = x_A$$

$$\phi_2 \beta + \phi_1 (1 - \alpha) = x_B$$

$$\phi_3 \gamma + \phi_2 (1 - \beta) = x_C$$

Constraints arising due to mass balance

Parameters optimized such that the formation enthalpy is minimized. The final enthalpy is the one that is calculated with the optimized parameters.

The ternary Miedema

A comparison of experimentally observed formation enthalpy of TM-AI vs AI-Ni-X alloys

The binary Miedema

The extended Miedema

Experimental values from R. Hu, P. Nash, Journal of Materials Science 41 (2006) 631-641.

Screening for High Temperature Aboratory Systems

Conceptual Framework

- Strength and Toughness
 - Matrix needs to be high symmetry
 - Avoid brittle intermetallics
- Oxidation stability
 - Need source of AI, Cr etc., depending on application
- High melting T
- Alloy architecture based on Ni-based superalloys
 - Replace Ni matrix with more refractory metal
 - Retain NiAl for oxidation stability
 - New matrix should not form compounds with AI
 - higher T_m is reflected in an increase in enthalpy

IOWA STATE UNIVERSITY

Relative stability & melting LABORATORY

3	4	5	6	7	8	9	10	1	1			
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	С	u /	ΔΗ (ΝΙΑΙ) – ΔΗ(ΤΜΑΙ)		
0.3	0.2	-8	-33	-4	-16	-5	xxx	-3	6	More negative is better!		
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	A	g			613
0.22	0.7	-6	-24	xxx	-3	0.3	0.7	-4	1			
La	Hf	Та	W	Re	Os	lr	Pt	Α	u			
0.16	0.5	-5	-28	-19	xxx	xxx	0.7	-1	7			
		3	4	5	6	7		8	9	10	11	
But not enough also		Sc	Ti	V	Cr	M	n	Fe	Со	Ni	Cu	
need a high melting T		1539	1670	1902	1857	7 124	4	1540	1495	1453	1083	
		Y	Zr	Nb	Mo	Τα	2	Ru	Rh	Pd	Ag	
			1526	1852	2467	2617	7 220	00	2250	1963	1552	961
			La	Hf	Та	W	R	Э	Os	lr	Pt	Au
			920	2227	3014	3407	7 318	80	3027	2443	1772	1065

Initial screening: base alloyes LABORATORY

Possible choice of "backbone" metal

Sc, Ti, V, Mn, Fe, Co, Y, Zr, Nb, Mo, Ru, Rh, Re, Pd, Pt, La, Hf

Alloy system = NiAl (oxidation resistant phase) + backbone phase (metal rich solid solution)

Cast ingot of a Mo-Ni-Al:

Mo dendrites (bright) show very little ss w/ Ni or Al

Mo appears to be the best choice for the backbone metal based on strength, ductility, T_m and cost.

Secondary screening of Alloy systems: additions to oxidation resistant phase

- Use the Miedema model results to find elements that increase the formation enthalpy (makes it more negative) when added to Ni-Al, but does not increase the formation enthalpy when alloyed with the refractory metal matrix
- Find the enthalpy minima when the 4th element is substituted for Ni (Mo-AI-Ni-X)
- Possible quaternary additions: Pd, Pt, Rh (these increase the enthalpy and have the same crystal structure as nickel)
- Augment semi-empirical with more accurate ab initio
 - Need for more precise enthalpies
 - Specific limits of solid solutions
 - Don't need a database!

Secondary screening

 Choice of alloying additions to NiAl – enthalpy criterion

3	4	5	6	7	8	9	10	11
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu
-195	-179	-128	-96	-120	-101	-109	xxx	-95
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
-187	-232	-152	-100	xxx	-113	-146	-171	-94
La	Hf	Та	W	Re	Os	Ir	Pt	Au
-181	-211	-152	-96	-97	xxx	xxx	-171	-96

Red colors indicate elements most likely to alloy w/ Ni-Al and not Mo

Secondary screening

List of favorable elements

Sc, Ti, Y, Zr, La, Hf, Pd, Pt, Rh, Nb, Ta

Finer screening

- Eliminate alloying additions that stabilize the liquid
- Eliminate alloying additions that tend to form porous non-volatilizing oxides (e.g. Nb)

Effect of alloying additions LABORATORY

- Ab-initio calculations and site preference
- Thermal stability ultra high temp DTA
- Oxidation resistance as a function of temperature (flowing air and cyclic tests)
- Studies on the oxide scale
- Mechanical strength

Final Computational Screen LABORATORY

- Ab-initio studies using VASP with GGA potentials, NiAI (B2)
- 54 atom unit cell used for all the calculations
- Calculations carried out by substituting ternary alloying element for Ni and Al
 - Substitute 1, 2, 4 or 6
 - Test both Ni and Al sites
 - Y, Hf, Zr, Rh, Pd, Ru, Ti, Pt, Nb, Ru,
 Sc

3x3x3 unit super-cell

Site Preference

- Thermodynamically, the Ni site is preferred!
- Substitution in Ni site results in a drop in formation enthalpy
 - Guide for Experiments!

Estimates of melting

Rose-Ferrante relation for melting – based on the ulletuniversal binding curve

Reference: Li et. al., J Phys Chem Sol 64(2003) 201

Experimental Validation

- Tested NiAl+TM, both Ni and Al sites
 TM = Zr, Y, Hf, Rh and Pd
- Arc-melted in a 2-stage process
- Drop-cast to obtain cylindrical samples
- Annealed at 1300°C for 6 hrs
- Characterization SEM, XRD
 - Single phase?
- Further testing, Rh and Pd
 - flowing air oxidation
 - hardness

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

What worked & what didn't aboratory

X-Ray diffraction

- Linear increase in lattice parameter
- 2nd phase formation when Pd/Rh is substituted for Al
- ab initio calculated lattices (dashed)

- Confirms Pd/Rh substitutes Ni
- Occupancies in good agreement with target compositions for single phase alloys

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Effect of alloying additions LABORATORY

NiAl without any addition (1150C, 25hrs)

Ni₄₁Al₅₀Rh₉ (1150C, 25hrs)

Effect of alloying additions LABORATORY

NiAl without any addition (1150C, 25hrs)

Ni₄₁Al₅₀Pd₉ (1150C, 25hrs)

Preliminary oxidation studies: Pd and Rh improve oxidation resistance for NiAl

- Hierarchical scheme works!
 - Estimated formation enthalpies on >10² ternary compounds, Miedema
 - Reduced that to 11 for ab initio
- Identified base alloy: Mo-Ni-Al
 - High Temperature backbone w/ source for oxidatively stable elements
 - Need for microstructure control
- Identified quaternary additions to further stabilize Mo-NiAI
 - Pd and Rh best candidates
 - Possible alloy additions were well identified by computational tools
 - But did require experimental validation (Zr and Hf didn't work)
- Rh expected to have a beneficial effect on melting temperatures
 - Requires experimental validation

Key tasks over next year AMES LABORATORY

- Thermal stability of Ni-AI-TM alloys

 Validate estimates on T_m
- Oxidation studies up to 1300°C
 Ternary compound first
- Mechanical behavior of Ni-Al-X alloys

 Brittleness of NiAl a concern
- Microstructure tailoring of Mo-Ni-Al-X alloys
 - Directional Solidification studies

Acknowledgements

- Yiying Ye
 - Ab initio calculations
- Sumohan Misra
 - XRD, powder and single crystal
- Travis Brammer
 - Sample preparation
- This work was supported by DOE-FE (ARM program) through Ames Laboratory contract number DE-AC02-07CH11358

Putting it Together

- Basic concept: align the Mo dendrites so as to have minimal surface area exposed
- Initial proof of concept studies being carried out by pulsed laser melting
- Still remains a processing challenge

Effect of alloying additions LABORATORY

- Flowing air tests at 1300°C
- Massive scale spallation in NiAl
- Spallation observed in Rh containing alloys to a lesser extent

Effect of alloying additions LABORATORY

NiAl without any addition (1300C, 100hrs)

Ni₄₁Al₅₀Rh₉ (1300C, 100hrs)

Miedema model for binary alloys

The "macroscopic atom" picture

Ref: Enthalpies in Alloy, H. Bakker

```
• Flow of charge \propto (\Delta \varphi)^2

• Removal of discontinuity in \propto (\Delta \eta_{WS}^{1/3})^2

- \Delta H_{AB}^{i/c} = \frac{V_A^{2/3}}{(\eta_{WS}^{1/3})_{av}} \left\{ -P(\Delta \varphi)^2 + Q(\Delta \eta_{WS}^{1/3})^2 \right\}
```

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Miedema model for binary alloys

The sub-regular formalism

$$G_{mix} = \sum_{i} x_{i}G_{i} + RT\sum_{i} x_{i} \log_{e} x_{i} + \sum_{i} \sum_{j>i} x_{i}x_{j} \left(\Omega_{ij}^{i}x_{i} + \Omega_{ij}^{j}x_{j}\right)$$

$$\Delta H_{AB}^{i/c} = \frac{V_{A}^{2/3}}{(\eta_{WS}^{1/3})_{av}} - P(\Delta \varphi)^{2} + Q(\Delta \eta_{WS}^{1/3})^{2}$$

$$\Delta H = c_{A}c_{B}(f_{B}^{A}\Delta H_{AB}^{i/c} + f_{A}^{B}\Delta H_{BA}^{i/c})$$

$$f_{B}^{A} = c_{B}^{s}[1 + \gamma(c_{A}^{s}c_{B}^{s})^{2}]$$

$$c_{B}^{s} = \frac{c_{B}V_{B}^{2/3}}{c_{A}V_{A}^{2/3} + c_{B}V_{B}^{2/3}}$$

Ref: Miedema et. al., Physica 100(1980)1-28

-80

-60

-40

-20

-100

Volume and structural corrections

Volume change during alloying $1.5c_i^s V_i^{2/3} (\phi_i^* - \phi_i^*)$

$$\Delta V_i = \frac{1.3c_j v_i (\psi_i - \psi_j)}{2(n_{ws}^{-1/3})_{av}} (n_{ws,i}^{-1} - n_{ws,j}^{-1})$$

 $V_i^* = V_i + \Delta V_i$

(Ref: Miedema and Niessen, Physica 114B (1982) 367.)

Structural contributions

$$H_{AinB}^{struct} = (Z_A - Z_B) \frac{\partial E^{struct}(B)}{\partial Z} + (E_B^{struct} - E_A^{struct})$$

(Ref: Enthalpies in Alloy, H. Bakker)

Significance of structural and volume contributions

Structural contributions

• The structural term is not symmetrical. Hence is more acute when H_{AinB}^{struct} and H_{BinA}^{struct} have vastly different values.

• Eg. Hf-Ni system. (H_{NiinHf}^{struct} = 36kJ/mol; H_{HfinNi}^{struct} = -47kJ/mol)

Volume contributions

 \circ Arises in order to accommodate the increase in charge at the W-S boundary $\left(|\Delta Z|/n_{\rm WS}\right)$

• Volume change is proportional to

 Has a minor contribution in case of transition metal alloys, but has a significant effect in case of main group elements

Dependence on accuracy of binary systems

Deviation of calculated enthalpy from experimentally observed values

Method	Mean	Median	Standard deviation
Al-Ni	0.9781	0.15974	4.31164
Al-Hf	-19.09031	-19.01878	6.43103
Hf-Ni	1.12844	0.54827	3.51746
Al-Y	10.42351	17.00984	13.39821
Ni-Y	-9.31121	-9.40568	6.14083
Al-Ni-Y	-0.91962	0.36871	6.01413
Al-Ni-Hf	-2.4572	-2.5608	1.80778