

Computational Modeling and Assessment of Nanocoatings for USC Boilers

Presented by:

- D. Gandy (EPRI), davgandy@epri.com
- S. Cheruvu (SWRI), Scheruvu@swri.org
- J. Shingledecker (EPRI), Jshingledecker@epri.com

DOE Sponsored Program: DE-FC26-07NT43096

Background

• Fireside corrosion of boiler waterwalls continues to be the #1 issue resulting in forced outages and boiler unavailability for "conventional" coal-fired fossil boiler power plants.

Equivalent Availability Loss from Boiler Tube Failures in US is 2.5-3.0%

Background--Annual Corrosion Costs

Corrosion Problem	O&M Corrosion Cost \$ Millions	Depreciation Corrosion Cost \$ Millions	Total Corrosion Cost \$ Millions
Waterside/Steamside Corrosion of Boiler Tubes	916.0	228.4	1,144.4
Turbine CF & SCC	458.0	142.8	600.8
Oxide Particle Erosion of Turbines	274.8	85.7	360.5
Heat Exchanger Corrosion	274.8	85.7	360.5
Fireside Corrosion of Waterwall Tubes	183.2	142.8	326.0
Generator Clip to Strand Corrosion	183.2	28.6	211.8
Copper Deposition in Turbines	91.6	57.1	148.7
Fireside Corrosion of SH & RH tubes	91.6	57.1	148.7

Source: Syrett, et al. Low Temperature Corrosion, EPRI

Background

- Typical boiler wastage rates are:
 - Subcritical 20 mils (0.5mm)/year
 - Supercritical 40-100 mils (1.0-2.5mm)/year
- Corrosion rates tend to increase with increasing temperatures.
- Higher operating metal temperature of supercritical boiler tubes tend to increase corrosion rates by 2-5X

Background

- USC boiler metal temperatures will approach 1400F (760C).
 - Accelerated corrosion rates are anticipated at these temperatures
- Alloys such as P91, Super 304H (austenitic SS), and Alloy 230 (nickel-based) alloys will be required.
- Advanced austenitic SS typically exhibit poor sulfidization or coal ash resistance.
 - Reliable sulfidization and oxidation resistant nanocoatings are required for improved durability of USC boiler tubes.

DOE Nanocoatings Project Objectives

- 1. Develop/demonstrate *nano-structured coatings* using computational modeling methods to improve corrosion/ erosion performance of tubing in USC boiler applications.
- 2. Improve the reliability and availability of USC fossil-fired boilers and oxy-fuel advanced combustion systems by developing advanced nano-stuctured coatings:
 - optimized utilizing science-based computational methodologies
 - validated via experimental verification and testing in simulated boiler environments

What is a Nanocoating?

Nanocrystalline materials/coatings:

Human Hair = 85µm = 85000nm

- Single or multi-phase
- Grain size <100 nm (1nm = 10 Angstroms)
- Interfaces cover significant portion of the microstructure
- Dense
- Very hard and tough
- Offer excellent corrosion/oxidation/erosion properties compared to conventional materials/coatings

Oxidation Behavior of Nanocoatings

--@ 1000°C (1832°F)

Improved scale spallation resistance

Similar results were reported for CoCrAlY/FeNiCrAl microcrystalline coatings

1) Gao et al., Advanced Materials, 2001, 13, pp. 1001, 2) Liu et al., Oxidation of Metals, 1999, © 2009 Electric Power Reseason Institution of Metals, 1996, 45, pp. 39 RESEARCH INSTITUTION

Finer Grain Size Promotes Formation of Stable Alumina Scale

- Coating Ni-20Cr-2 Al
- Exposed @ 1000°C for 100 hrs
- Fine grained coating (60nm) exhibited continuous protective alumina scale
- Coarse grained coating severely oxidized

This would increase life by 3 to 4X

Corrosion Resistance of Nanocoatings

--Finer grain size also lowers minimum Cr requirement!!

For corrosion resistance formation of chromia scale is crucial Typically 20% Cr is required for protective scale formation

- Ni-10% conventional coating was severely corroded (no continuous chromia scale!)
- Continuous chromia scale was formed under the Ni-rich oxide in -Ni-20% Cr coating - showed minor internal sulfidation
- Nanostructured Ni-11% coating showed continuous chromia scale (no sulfidation)

Ni-10% Cr Conventional

Ni-20% Cr Conventional

Ni-11% Cr Nanostructure

Project Tasks

- Task 1: Computational Modeling of MCrAl Systems
- Task 2: Establishment of Baseline Coating Data
- Task 3: Process Advanced MCrAl Nanocoatings
- Task 4: Fire-Side Corrosion Testing
- Task 5: Computational Modeling & Validation
- Task 6: Mockup Demonstration
- Task 7: Project Management & Reporting

Task 1: Computational Modeling of MCrAl Systems --completed

Objective: Select potential MCrAl nanostructured coating compositions using computational modeling

Task 1- Computional Modeling Of MCrAl Composition Selection

- Completed computations of FeNiCrAlx phase diagrams
- Al additions <u>suppress</u> sigma phase formation, while Mo and Co promotes.
- 4-5%Al is required to form a continuous Alumina scale.
- To ensure sufficient Al source, 10% Al is selected.
- Suggested nano-coating systems for evaluation:
 - 310 +10%AI
 - 310 +30-35Ni +10%Al
 - Fe-35-40Ni-25Cr-10%Al

Task 1 - Computational Modeling -- Grain Growth Modeling

 Grain growth model results showed that the presence of high concentration low angle boundaries in the coating prevents grain growth

- Thermal exposure at 750°C leads to sintering
- Coating/interface toughness was determined
- The sputtered coatings exhibited good toughness
- Indentation testing showed no coating delamination

Misorientation Angle

Candidate Nanocoatings for Evaluation

Model Recommendation

Coating composition: Fe-25Cr- 30/40Ni-10 Al

Candidate Nanocoatings Selected For Evaluation

- 310 + AI (Fe-25Cr-20Ni-10AI)
- Haynes 120+AI (Fe-37Ni-25Cr-AI)
- Haynes 160+AI (Ni-29Cr-28Cr-3Si-AI)
- Haynes 188+AI (Co-22Ni-22Cr-14W-10AI)

Task 2: Establishment of Baseline Coating Data

--completed

Objective: Evaluate conventionaland available vendor nanocoatings to assess properties

Task 2. Establishment of Baseline Coating Data

- Fe-18Cr-8Ni-xAl Nanocoatings were deposited on 304SS and P91 samples
- Ni-20Cr-xAl Nano-coatings were deposited on Haynes 230 and P91 samples
- Long term cyclic oxidation tests were conducted on the coated samples

Task 2. Baseline Coating Data --Cyclic Oxidation Behavior of Fe-18Cr-8Ni-xAl Coatings

- Fe-18Cr-8Ni-xAl Nano-Coating Improved Oxidation Resistance By 2X.
- The Addition Of Al Improved
 - Oxide-Scale Spallation Resistance
 - And Oxidation Resistance

Task 2. Baseline Coating Data -- Coating Oxidation Characterization

Fe-18Cr-8Ni-xAl

- 1). The protective oxide layer
- 0% Al coating Cr₂O₃
- 4 and 10%Al coatings Al₂O₃
- 2). 4% Al coating was oxidized
- 3). 10% Al coating was free from internal oxidation
- 4). Inward diffusion of Al led to formation of inter-diffusion zone

Task 2. Baseline Coating Data --Cyclic Oxidation Behavior of Ni-20Cr-xAl Nanocoated and Uncoated Samples at 750°C

Continuous mass gain of the coated samples indicates the outward growth of oxide scale

Scale is highly resistant to spallation

Haynes 230 may not need a coating at 750C

Thermal Cycles at Peak Temperature of 750⁰C

Task 2. Baseline Coating Data --Oxide Scale on Ni-20Cr-xAl NanoCoating After Exposure at 750°C

- Protective external oxide scale is dense, free from cracks
- Highly resistant to spallation and coating is free from internal oxidation
- Continuous mass gain is due to outward growth of the scale
- Al consumption rate is high
- The coating with 4% Al may not be durable for long-term service
- Established need for at least 7% Al for long-term durability

Task 3: Processing of Advanced NanoCoatings

--in progress

Objective: Apply advanced nanocoatings on USC substrates and evaluate properties

Task 3 - Processing of Advanced NanoCoatings

- Plasma Enahanced
 Magnetron Sputtering
- Process optimization study was conducted to improve the density of the coating
 - power applied to targets and bias voltage were varied
- Several trial coatings:
 304+10Al, 310+10Al and Ni-20-10Al were deposited
- Coated samples were destructively examined

Task 3 - Processing of Advanced NanoCoatings -- Metallographic Examination

Result: Dense Nanocoating Microstructures

1000X

2000X

Task 3 - Processing of Advanced NanoCoatings -- Coating Adhesion Results

No coating delamination, DE 3 parameters were selected

Task 3 - Processing of Advanced NanoCoatings -- Selection of Process

- Process parameters of DE 3 produced good quality coating
- Four advanced coatings (next slide) were deposited on P91, 304 SS and Haynes 230 samples for corrosion testing using DE 3 parameters

Concerns:

- ✓ Accelerated Al consumption rate
- ✓ Repeatability of Coating Quality
- ✓ Coating Cracking

Task 3 - Processing of Advanced NanoCoatings

- Four advanced coatings were deposited:
 - > 310 + AI (Fe-25Cr-20Ni-10AI)
 - ➤ Haynes 120+Al (Fe-37Ni-25Cr-Al)
 - > Haynes 160+AI (Ni-29Cr-28Cr-3Si-AI)
 - > Haynes 188+AI (Co-22Ni-22Cr-14W-10AI)
- Coated P91, 304SS and Haynes 230 samples were shipped to Foster Wheeler for Corrosion Testing
- Process optimization trials for depositing interlayer and advanced coatings are in progress

Task 3 - Processing of Advanced --Comparison of Nanocoatings with Conventional Plasma-Sprayed NiCoCrAIY

Task 4: Fireside Corrosion Testing

--in progress

Objective: Conduct accelerated fireside corrosion tests

Task 4 - Corrosion Testing

- In addition to the 4 newly developed test nanocoatings, two vendors supplied nanocoatings for corrosion testing:
 - N-TECH Inc.
 - NanoSteel

Task 4 - Corrosion Testing --Testing Conditions

Waterwall Testing

- 850F (454C), 975F (524C), and 1100F (593C)
- 40 percent FeS and 0.2 percent chlorides (same as USC program)

Superheater/Reheater Testing

- 1100F (593C), 1300F (704C), and 1500F (816C).
- 5 percent alkali sulfates (same as USC program)
- simulate Eastern bituminous coal compositions.
- Perform 1000hr tests (at 100hr intervals).

Task 4 - Corrosion Testing -- Following first 100hrs of testing

Waterwall Test Rack at 850F (100 hrs)

Task 4 - Corrosion Testing -- Following 500hrs of testing

- A few nanocoatings still in good shape after 500hrs exposure.
- Many samples exhibited some level of blistering.
 - Suggests coating processing issues.
- Metallography just starting
- Will require recoating (process improvement warranted) and additional corrosion testing.

Conclusions To Date

- For long-term term durability, nano-coatings should contain ~10%Al.
 - A continuous, Al-rich protective oxide scale can be achieved with this level of aluminum.
- 4 nanocoatings selected using computational thermodynamics.
- Good cyclic oxidation performance exhibited for baseline nanocoatings (Fe-18Cr-8Ni-xAl, Ni-20Cr-xAl)
- Early nanocoatings corrosion results suggest processing concerns—more work to do!
- A diffusion barrier layer slows AI consumption rate dramatically.

What's Next

- Complete fire-side corrosion testing (1000 hr) of nanocoatings at Foster-Wheeler (Task 4)
- Repeat coating processing trials (Task 3) and additional corrosion work.
- Validate computational model (Task 5)
- Nanocoating mockup demonstration (Task 6)

Together...Shaping the Future of Electricity