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Major Conclusions

• Demonstrated the feasibility that the 
stability and catalytic properties of 
LSCF-based cathodes can be 
enhanced by infiltration of a 
catalytically active coating.

• Developed a platform for reliably 
evaluating the surface catalytic 
properties of cathode materials.
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Motivation

Since performance/reliability of SOFCs depends critically on the 
cathodes (more so at lower operating temperatures), reduction in
cathode polarization resistance and improvement in stability will reduce 
the cost of SOFCs and help to meet DOE cost goals.

─ Reduce the ASR of the cathode to further enhance the performance 
and reduce the losses on cathodes

─ Improve the stability and operational life of cathodes and SOFCs

─ Reduce the sensitivity to contaminants poisoning (using a coating with 
tolerance to poisoning)

─ Develop new approaches to high performance cathodes through new 
design of cathode architecture

Benefits
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Characteristics of an ideal cathode material

A porous MIEC backbone with a thin film coating of 
catalytically active materials for oxygen reduction

• High catalytic activity

• Fast Transport of ionic 
and electronic species
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Objectives

• To demonstrate the concept feasibility that a highly 
conductive backbone coated with a catalytically 
active material makes a more efficient electrode; 

• To determine if the surface catalytic property and/or 
stability of a state-of-the-art LSCF cathode can be 
enhanced by a catalytically active coating; and 

• To gain insight into rational design of better or more 
efficient electrode structure or microstructure.
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Technical Approach
• To develop a strategy for reliable testing of surface 

catalytic properties of a thin film cathode material  
without the limitation of geometry/microstructure of  
the electrodes;

• To modify the surface of an LSCF backbone 
(having high ionic and electronic conductivity) by a 
thin coating of a stable and catalytically active 
material for O2 reduction;

• To select and modify the detailed microstructure of 
backbone and catalyst materials that create a 
better performing cathode.
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Electrolyte

Porous MIEC Electrode

How to determine the catalytic property of an electrode?

Little can be learn from the impedance spectra.
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Challenges

• How to determine the intrinsic properties or how to 
eliminate the effect of electrode microstructure? 

• How to separate charge transfer from the mass 
transfer processes?

• How to isolate different reaction sites and sort out 
the reaction sequence and mechanisms?

• How to extract the characteristic parameters of       
electrode materials?
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Electrode of well-controlled geometry

• To eliminate the effect of microstructure of porous 
electrodes (or to decouple intrinsic from extrinsic 
properties)

• To correlate electrochemical performance with sp
ecific reaction sites (TPB, surfaces, etc…)



Improved Cathode Performance via Infiltration

Processes Relevant to Continuum Modeling

Choi, Mebane, and Liu, Topics in Catalysis, 46, (2007), p.386.

Schematic of oxygen reduction and the 
relevant transport processed in an SOFC
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The Simplest Case:
Surface reactions on a dense MIEC electrode

MIEC h,e’ VO

Electrolyte

O2
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Activity of the Bulk MIEC

As the thickness of the MIEC, L, decreases, 
ionic transport gets easier while electronic transport gets harder.

Two competing influences:
• Top-to-bottom vacancy transport: 
• Lateral transport of electrons/holes:

L
R

sheet

1∝

LR
OV

∝•• = thicknesss

CC

MIEC h,e’ OS

Electrolyte

CC
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How to decouple charge transfer from mass transfer?

CC
O2

2e’VO
••

O2 reduction involves electron and vacancy         
transport as well as surface reactions across        
the MIEC-air interface; thus, Rp depends on        
Rsheet, Rv, and Rsurface.

• By changing the thickness of the dense MIEC    
electrode
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Effect of L on Rsheet , RV, Rsurface
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LSCF

Electrolyte
Counter 
electrode

Working 
electrode

current 
collector

Pt mesh

Surface catalytic coating

Step 1: The optimal thickness of LSCF can be determined from its 
effect on cell performance → thickness window for surface study

Step 2: A cell with proper thickness of LSCF as the current
collector can then be used to evaluate the surface catalytic 
properties of the surface coating

Test Cell: Cross-sectional view
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Effect of L on Rsheet , RV, Rsurface
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Morphology and thickness of LSCF

(a) (b)

Annealed at 800oC for 1 hour; the desired phase was confirmed by 
XRD and Raman spectroscopy.

150nm  
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Raman spectra of LSCF
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The sheet resistance is no longer rate-limiting for LSCF films thicker 
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Dependence of RP on pO2 - Theory
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Dependence of Rp on pO2 at OCV
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Effect of surface modification
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LSM-Infiltrated LSCF

Cross-sectional views of porous LSCF cathodes: (a) blank 
LSCF, (b) infiltrated with SSC (concentration of SSC 
solution: 1.44 mol/L), and (c) infiltrated with LSM 
(concentration of LSM solution: 0.0312 mol/L). 850ºC/ 1hr
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Typical Impedance Spectra
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Effect of polarization on Rp

• Polarization resistance of porous LSCF and LSM infiltrated LSCF
electrode
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Sm0.6Sr0.4CoO3-δ (SSC) infiltrated LSCF-6428

• Comparison of polarization resistance (Rp) of the blank, LSCF infiltrated, 
and SSC infiltrated LSCF/GDC/LSCF symmetrical cells. 



Improved Cathode Performance via Infiltration

Performance stability of LSM/LSCF
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Current-Voltage Characteristics
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Cell performance
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Conclusions
Developed a platform for reliably evaluating the surface 
catalytic properties of cathode materials;
Fabricated high quality thin films of cathode materials for 
evaluating their intrinsic catalytic activities

Confirmed that the surface catalytic activity limits the 
performances of LSCF-based cathodes;

Enhanced the stability and performance of LSCF-based 
cathodes by infiltration of a catalytically active coating 
(such as LSM and SSC); and

Demonstrated the concept feasibility of the novel 
cathode design - highly conductive backbone coated with 
a highly active catalyst.
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Questions yet to be Answered
Several fundamental questions still remain:

Why are the degradation rates of LSCF cathodes 
relatively high? What is the degradation mechanism?

Why does a LSM coating improve the stability of LSCF 
cathodes? What is the mechanism?

Are there other catalytically more active materials for the 
catalyst or more effective matrixes as the backbone?

The long-term stability of the interfaces (e.g., 
LSM/LSCF) is yet to be determined.
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Other questions to be Answered
• How the surface morphology, composition, and thickness of      

the coatings change under operating conditions?

• How these changes influence the electrochemical behavior of   
the cathodes? 

• How to control the microscopic details of the coatings in order 
to optimize the performance? 
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