

Direct Coal Power Generation Using Liquid Tin Anode Fuel Cell

9th Annual SECA Workshop Pittsburg, PA

August 7, 2008

Liquid Tin Anode Direct Coal Fuel Cell

Background

- How it Works
- Technology Experience
- Direct JP-8

Power Gen Applications

- Potential Benefits
- Challenges
- Experimental Work
- Development Activities

CellTech Technology: Liquid Tin Anode

Tin is Ideal Anode

Fuel Cells for Real Fuels

- ✓ Low Cost
- ✓ Non-toxic
- ✓ Not harmed by sulfur, carbon
- √ Wide industrial application

Liquid Tin Anode: Experience

- Strong DoD support (Direct JP-8, portable)
 - 4X power density increase demonstrated in 2007
 - Additional 6X possible
 - Fundamental, Cell & System development support
- 1 kW Natural Gas prototype operated 2000 hrs
- EPRI Direct Coal and Biomass
 - Direct Coal experimental evaluation
 - Short term, no detectable contaminants in tin

Direct JP-8 Conversion

Top View

Gen 3.0

Developed 2005-6:

For DARPA/MISER
Direct Waste Plastic
Conversion

Gen 3.1

Developed 2007-8:

For DARPA/ARMY Direct JP-8

Conversion

4x reduction

250 Watt JP-8 Fuel Cell Generator Concept

250 Watt Generator

System Specifications

250 Watt DC or AC output

12 kilogram dry weight

20 liter volume

1 week operation on 5 gallons of JP-8

LTA- SOFC Direct Coal Use existing Gen 3 Architecture

Cell Cross Section

Tin Reactor Flowsheet with ccs

Fuel Cells for Real Fuels

Tin Reactor Flowsheet with ccs

CellTech Direct Coal: Potential

- Near 100% CO₂ capture
- Similar capital cost to conventional coal
- Lower efficiency penalty for CO₂ capture
- Scalable for early biomass markets (1 MW range)

Direct Coal - Major Challenges

DOE Programs

Cell/Stack

- Impurities
- Cell Scale-up

DoD Programs

- Power density
- Cathode improvement
- Longevity

Collaboration

System

- Molten Metal Anode Chemistry
- Molten Tin Processing
- 100% Fuel Utilization
- Electrical Isolation
- Tin Circulation

Direct Coal Experimental Efficiency Evaluation

Batch mode, single cell

	Bio-char	Coal
	Univ of Hawaii	Pulverized East/West
Net power measured at test stand load	34%	37%
IR and Air Corrected	67%	>57%

Without correction for fuel utilization

Direct Coal Experimental Contaminate Evaluation

Contaminants of Interest

Arsenic (As)

Chromium (Cr)

Molybdenum (Mo)

Niobium (Nb)

Selenium (Se)

Tantalum (Ta)

Tellurium (Te)

Tungsten (W)

Uranium (U)

Vanadium (V)

Procedure

Batch mode

Coal in tin reactor 1000° C

Coal reacted to completion

100 hr test

Results

Contaminants of interest below detectable limits

Operation on Plastic

Polypropylene 2 Amp Run

Operation on carbon

DOE Programs- Key Technical Tasks

Two Programs to look at key risk areas for Direct Coal using Liquid Tin Anode

- 1. Novel Coal Cooperative Agree. Phase 1: 18 months
 - Contamination Evaluation—
 - Non-electrochemical
 - Electrochemical
 - Provide input to DOE Systems Analysis

- 2. Direct Coal SBIR Phase 1: 9 months
 - Cell scale up analysis and design

Novel Coal Phase 1 – 18 Months

Coal Tin Reactor Test: Batch testing to establish equilibrium levels of contaminants

Coal Electrochemical Test: Evaluate impact of tin contaminants on YSZ. Use Gen 3.1 JP-8 cells.

Phase 2: Cell/Stack Testing in molten tin

Co-funded by EPRI

Phase 1 SBIR

Cell Scale Up

- a) Use existing data to develop a polarization curve
- b) Cell scale up to 1kW-Preliminary design
- c) Cell Degradation SnO₂-YSZ plus contaminants
 - i. Areas of concern, possible mitigation techniques

Summary – Liquid Tin Anode

- Tin "purification" decouples coal oxidation from power production
- Could achieve breakthrough efficiency and enable 100% CO₂ capture
- EPRI & DARPA programs have established feasibility of Direct Coal/JP-8
- Strong DoD support for small cells provides an R&D platform for coal
- DOE/CellTech programs focus on impurities and efficiency validation
- Cooperative programs planned for "balance of system" technology development

