

... for a brighter future

U.S. Department of Energy UChicago ► Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

DEVELOPMENT OF NONDESTRUCTIVE EVALUATION METHODS FOR THERMAL BARRIER COATINGS

J. G. Sun

Nuclear Engineering Division Argonne National Laboratory Argonne, IL 60439

22nd Annual Conference on Fossil Energy Materials
Pittsburgh, PA
July 8-10, 2008

Work supported by U.S. Department of Energy, Office of Fossil Energy, Advanced Research-Materials Program

Outline

- Background
- NDE technologies and typical results
 - Optical methods
 - TBC thickness
 - Thermal imaging methods
 - TBC thickness and thermal property
- Summary
- Planned future efforts

Background

- Thermal barrier coatings (TBCs) are "prime reliant" material for turbine engine components – evaluation of their conditions by NDE is important
- NDEs may be used to:
 - Assess TBC process reliability and product quality (specs, defects, etc)
 - Current TBC processing relies on robust process conditions
 - Monitor TBC degradation and predict TBC lifetime
 - TBC degradation mechanism: crack initiation near TBC/bond coat interface → TBC delamination → TBC spallation (failure)

Background - continued

- Current NDE methods are not suitable for quantitative TBC evaluation
 - Optical methods; eddy current; impedance spectroscopy; thermal spectroscopy; thermal imaging, etc
 - · qualitative, semi-empirical, point detection-not suitable for full field imaging
- NDE development at ANL is focused on quantitative methods that can be used for fundamental TBC property/condition studies and for field monitoring/prediction of TBC degradation and lifetime
 - Quantitative determination of TBC thickness and thermal conductivity which are two of the most important parameters for TBC quality and degradation
 - They determine the substrate surface temperature
- NDE methods developed under this project 2D and 3D imaging technologies:
 - Optical methods: for TBC thickness and degradation/delamination
 - For EB-PVD and thin APS TBCs (without surface contamination)
 - Thermal imaging methods: for TBC thickness and conductivity (degradation/delamination)
 - Not limited by TBC thickness and surface contamination
 - Can be applied to other coating and multilayer systems

NDE Technologies for TBCs

- Optical methods
 - 3D optical coherence tomography (OCT)
 - TBC thickness
 - 3D TBC microstructure (and cracking)
 - 2D laser backscatter
 - TBC degradation (cracking and delamination)
- Thermal imaging methods
 - 2D thermal multilayer modeling:
 - TBC thickness and conductivity distribution
 - TBC cracking and delamination
 - 3D Thermal tomography:
 - TBC thickness & thermal property distribution in 3D
 - 3D TBC structure (e.g., crack depth and size distribution within TBC layer)

Typical Optical Transmission Property of TBC

Hemispherical Transmittance of a 172-micron-thick TBC (APS-8YSZ)

From J.I. Eldridge, C.M. Spuckler, J.A. Nesbitt, and K.W. Street, "Health Monitoring of thermal barrier coatings by mid-infrared reflectance," presented in 2003 Cocoa Beach Conference

- Optical methods can detect TBC condition up to TBC/bond coat interface
- Deeper penetration when using infrared light
- This optical translucency is a problem for thermal imaging methods

Schematic of ANL's OCT System

- Interference for depth resolution; laser spot scanning for lateral resolution
- 3D imaging with typical resolution ~10µm in all dimensions
- Near IR light source, relatively deeper penetration depth
- Well developed method

OCT result for an angle-polished EB-PVD TBC

TBC thickness of angle-polished half-button sample

Photomicrograph of TBC sample edge (Aspect ratio: 1:2)

OCT Image near TBC sample edge (TBC refraction index = 2.04)

May detect cracks within TBC

NDE Technologies for TBCs

Optical methods

- 3D optical coherence tomography (OCT)
 - TBC thickness
 - 3D TBC microstructure (and cracking)
- 2D laser backscatter
 - TBC degradation (cracking and delamination)

Thermal imaging methods

- 2D thermal multilayer modeling:
 - TBC thickness and conductivity distribution
 - TBC cracking and delamination
- 3D Thermal tomography:
 - TBC thickness & thermal property distribution in 3D
 - 3D TBC structure (e.g., crack depth and size distribution within TBC layer)

Thermal Imaging Methods – Based on 1-Sided Flash Setup

Thermal conductivity:

TBC: k~1 W/m/°C

Bond coat: (similar as substrate)

Substrate: k~10 W/m/°C

Air: k=0.024 W/m/°C (fills cracks when they exist)

- High detection sensitivity due to large disparity of thermal properties at each layer
- Imaging method, fast (few to few tens seconds) for 100% surface inspection
- New 2D and 3D methods are developed at Argonne National Laboratory

TBC Parameters Measurable by Flash Thermal Imaging

Transient heat transfer equation (1D):

$$\rho C_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial z^2}$$

- Parameters in the equation:
 - TBC material properties: ρC_p heat capacity; k thermal conductivity
 - Length scale: TBC thickness (L)
 - Temperature scale: based on experimental maximum-minimum
 - Time: measured in experimental data
- Therefore, three parameters are relevant in transient thermal test: ρC_p, k, and L. Can they be independently determined from flash thermal imaging test?
- Note: ρC_p and k can be converted to another two thermal parameters:
 - Thermal difusivity $\alpha = k/\rho C_p$
 - Thermal effusivity $e = (k\rho C_p)^{1/2}$
 - Any two of these four parameters are independent

Analysis of thermal imaging response to TBC parameters -- TBC thickness L

- Plot of surface temperature decay slope vs. time in log-log scale
 - Simulated data for pulse thermal imaging of TBC specimens
 - TBC: L = varies, k = 1.5 W/m-K, $\rho C_p = 2.5 J/cm^3-K$
 - Substrate: $L = 3mm, k = 11, \rho C_p = 3.5$

■ TBC thickness determines the time when slope deviates from initial value of -0.5

Analysis of thermal imaging response to TBC parameters -- TBC conductivity k and heat capacity ρC_p

Variation in TBC conductivity:

TBC: L = 0.2mm, k = varies, ρC_p = 2.5 J/cm³-K Substrate: L = 3mm, k = 11, ρC_p = 3.5

Variation in TBC heat capacity:

TBC: L = 0.2mm, k = 1.5 W/m-K, ρ C_p = varies Substrate: L = 3mm, k = 11, ρ C_p = 3.5

Response of thermal imaging data to TBC conductivity & heat capacity is not distinct and separable

Analysis of thermal imaging response to TBC parameters -- TBC diffusivity α and effusivity e

Variation in TBC diffusivity α :

TBC: L=0.2mm, α = varies, e = 3.75 J/m³-K-s^{1/2}

Substrate: L = 3mm, k=11, $\rho C_p = 3.5$

Variation in TBC effusivity e:

TBC: L=0.2mm, $\alpha = 0.6 \text{ mm}^2/\text{s}$, e = varies

Substrate: L = 3mm, k=11, $\rho C_p = 3.5$

- Response of thermal imaging data to TBC diffusivity α is similar to TBC thickness! In fact, $\alpha t/L^2$ is a nondimensional parameter, and α and L cannot be individually determined in thermal imaging test for single-layer specimen
- TBC effusivity e affects only the maximum slope value, i.e, independent of L or α

Thermal Imaging Measurement for TBC parameters

- Among two TBC thermal properties and the TBC thickness, total of three parameters, only two can be determined independently by flash thermal imaging
- Thermal imaging (multilayer-modeling method) can determine/image:
 - (a) TBC thickness L with known TBC thermal properties k and ρC_p
 - (b) TBC thermal properties k and ρC_p with known TBC thickness L
 - (c) TBC conductivity k and thickness L with know TBC heat capacity ρC_p
 - Work for this development is underway
- Thermal imaging (tomography method) can image:
 - TBC effusivity e distribution (3D) as a function of depth (related to TBC diffusivity α)

NDE Technologies for TBCs

Optical methods

- 3D optical coherence tomography (OCT)
 - TBC thickness
 - 3D TBC microstructure (and cracking)
- 2D laser backscatter
 - TBC degradation (cracking and delamination)

Thermal imaging methods

- 2D thermal multilayer modeling:
 - TBC thickness and conductivity distribution
 - TBC cracking and delamination
- 3D Thermal tomography:
 - TBC thickness & thermal property distribution in 3D
 - 3D TBC structure (e.g., crack depth and size distribution within TBC layer)

2D Thermal Multilayer Modeling for TBC Systems

Analytical Thermal Imaging Model for Multilayer Materials

- Numerical solution of governing heat transfer equation for multilayer TBC materials
 - Crank-Nicolson scheme 2nd order in both time and space
 - with finite flash duration, finite absorption depth, finite imaging depth
- Automated procedure for prediction of TBC parameters
 - At each pixel, measured surface temperature is fitted with numerical solutions to obtain a least-square fit which determines correct TBC parameters: thermal conductivity, thickness, and absorption coefficient
 - Process all pixels to determine distributions of the parameters
- For multilayer materials, parameters in each layer include:
 - thermal conductivity k,
 - heat capacity ρC_p ,
 - layer thickness L,
 - and for translucent materials, the "absorption coefficient"
- This method can be used for any multilayer materials with any number of parameters

Translucent (natural) and opaque (black-coated) TBCs

Temperature vs. time

Temperature slope vs. time

Two-layer TBC

1: coating
2: substrate

- TBC thickness is related to the slope-change time
- TBC translucency is related to initial slope

TBC Thickness Distribution by Multilayer Modeling Method

1"-dia TBC sample partially coated with a black paint

Sample curtsey of Dr. A. Kulkarni, Siemens

Typical thermal image after flash

Predicted thickness map

Average thickness = 0.302 mm

Predicted optical attenuation coefficient map

Typical Fitting Results

Temperature vs. time (log-log scale)

Temperature slope vs. time (linear-log scale)

Poor fit in uncoated pixel due to inadequate optical transmission model

Multilayer thermal modeling for TBC thermal properties

EBPVD TBC sample

- As-processed TBC, 0.2 mm thick
- TBC was coated by a black paint

Sample curtsey of Mr. A. Luz, Imperial College London

TBC conductivity k (W/m-K)

TBC heat capacity ρC_p (J/cm³-K)

- Average TBC conductivity: 1.8 W/m-K (high?)
- Average TBC heat capacity: 2.2 J/cm³-K
- TBC thickness L = 0.2mm is fixed in the analysis
- Substrate (Inconel superalloy) property is fixed

Multilayer thermal modeling method summary

- Current software is robust to predict TBC thickness and TBC thermal properties (not combination of thickness + conductivity)
 - Among two thermal properties and a thickness (total 3 parameters), only two parameters can be determined by thermal imaging methods
- For thermal property prediction, current results are probably ~10% higher, likely due to nonlinear temperature response of the infrared camera
 - This will be examined and corrected
 - Prediction accuracy of <5% is expected (similar accuracy as laser-flash method when testing stand-alone TBC specimens)
- Additional developments:
 - Improve accuracy for predicting both TBC thickness and conductivity
 - Improve optical models used for thermal imaging of natural TBCs (w/o black coat)
 - Evaluate prediction accuracy for thin and thick TBCs
 - Account for interface resistance (due to cracks)

NDE Technologies for TBCs

Optical methods

- 3D optical coherence tomography (OCT)
 - TBC thickness
 - 3D TBC microstructure (and cracking)
- 2D laser backscatter
 - TBC degradation (cracking and delamination)

Thermal imaging methods

- 2D thermal multilayer modeling:
 - TBC thickness and conductivity distribution
 - TBC cracking and delamination
- 3D Thermal tomography:
 - TBC thickness & thermal property distribution in 3D
 - 3D TBC structure (e.g., crack depth and size distribution within TBC layer)

3D Thermal Tomography Method

Measured data T(x,y,t):

Time series of thermal (surface temperature) images

Tomography results e(x,y,z):

3D spatial distribution of a material property within the sample

- Thermal effusivity tomography technology:
 - Convert measured thermal-imaging data T(x,y,t) into 3D material thermal-effusivity distribution e(x,y,z) [$e = (\rho C_p k)^{1/2}$]
 - e(x,y,z) can be sliced in any planes (similar to x-ray CT slices)
- A new technology, US patent 7,365,330 issued in April, 2008.

Thermal Tomography Result for a Simulated TBC System

Material properties for a simulated TBC system

	L(mm)	k(W/m-K)	ρ C _p (J/cm³-K)	e(J/m ² -K-s ^{1/2})	α (mm ² /s)
TBC	0.3	1	3	1732	0.33
Substrate	3	10	3.5	5916	2.86

Two-layer opaque TBC

Predicted effusivity distribution along depth

- Thermal diffusion reduces resolution in substrate
- Methods to improve resolution are being investigated

Thermal tomography imaging for as-processed APS TBC

Thermal Effusivity Plane images

At depth around half TBC thickness

Thermal Effusivity **Cross-Sectional Images**

In coated region

TBC thickness (13 pixels) Substrate thickness (51)

At depth around half substrate thickness

In uncoated region

Substrate thickness (51)

- TBC translucency affects derived thermal effusivity values for TBC
- Depth resolution for TBC: 22.5 µm/pixel; for substrate: 62.4 µm/pixel

Thermal tomography results for a thick TBC

TBC thickness = 2 mm Substrate thickness = 4 mm

Sample courtesy of Dr. Derek Allen Alstom, England

Thermal tomography imaging for thermal-cycled TBCs

4 EBPVD TBC samples

- ☐ TBC thickness is 0.2 mm
- ☐ TBC was coated by a black paint

Two plane images

At TBC/substrate interface (~0.2mm)

Cracks at Interface (0.3-1mm)

Large debonds at interface

Two cross-sectional images

TBC thickness: 0.2mm (7.5 grids)

Flash duration artifact: effusivity is lower near surface and higher thereafter

This artifact can be corrected

surface

TBC

Cracks at interface

Debonds

Substrate thickness: 3mm (57.4 grids)

Thermal tomography method summary

- Thermal tomography is robust for 3D imaging of TBC systems direction determination of TBC parameters: thickness and thermal properties
 - US patent 7,365,330 issued in April, 2008
 - Software is being copyrighted
 - Considerable interests for this technology from industry
- Additional developments
 - Correct flash duration effect which affects imaging of thin TBCs
 - Evaluate/correlate TBCs with various microstructure (layered) and defects
 - Improve spatial resolution in depth direction
 - Improve spatial resolution in lateral direction

Summary

- 2D and 3D NDE methods were developed for quantitative imaging of TBC parameters – thickness and thermal property; preliminary results were obtained
 - (1) OCT method
 - 3D imaging of coating microstructure (needs refractive index for depth scale)
 - Max. detection depth depends on light wavelength and TBC microstructure
 - (2) Thermal multilayer modeling method
 - 2D imaging of TBC thickness and/or TBC thermal property
 - Current model valid for opaque TBCs (and thick translucent TBCs)
 - (3) Thermal tomography method
 - 3D imaging subsurface coating thermal property (effusivity)
 - Direct visual identification of TBC thickness
- These NDE methods can be used to monitor TBC degradation/delamination and to predict TBC lifetime
- Thermal methods are capable for fast imaging of large complex components

Planned Future Efforts

- Further developments of these NDE methods
 - Issues and correction approaches for each method were identified
 - Prediction accuracy of within 5% is targeted
 - Capable to image various TBC structures: thin/thick, graded/layered, opaque/translucent
- Validation of NDE methods for TBC degradation monitoring
 - Comparison with destructive examination results
 - Verification of data accuracy
 - Correlation of TBC parameter change to degradation "level"
- Correlation of NDE data between all methods

