Microstructure, Processing, **Performance Relationships for High Temperature Coatings**

Thomas M. Lillo Richard N. Wright

Materials Properties & Performance Idaho National Laboratory

Co-Investigators:

W. David Swank

D.C. Haggard

Dennis C. Kunerth

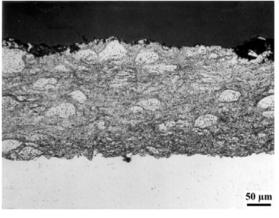
Denis E. Clark

22nd Annual Conference on Fossil Energy Materials July 8-10, 2008, Pittsburgh, Pennsylvania

Prepared for the U.S. Department of Energy, Office of Fossil Energy, Under DOE Idaho Operations Office, Contract DE-AC07-05ID14517


Introduction

- Research goal: understand relationships between <u>coating</u> <u>processes</u>, <u>coating characteristics</u>, and <u>coating performance</u>
- Coating types:
 - HVOF Fe₃Al, (alumina former)
 - HVOF 316SS (model alloy)
- Substrates:
 - Low-alloy ferritic steels
 - Advanced ferritic-martensitic steels (e.g. Grade 91)
 - Austenitic stainless steels
 - Ni-base alloys (e.g. alloy 600 or 617)



Past Results

- Thermal spray parameters can be used to generate highly dense coating with varying levels of residual stress
- Residual stresses in coating arise from three sources
 - CTE mismatch between coating and substrate
 - Quench stresses
 - "Peening" stress
- Corrosion resistance of coating is very close to wrought material
- Coating failure governed by cracking and delamination

570 m/s

630 m/s

Particle velocity, m/s	Residual stress, Mpa	Unmelt particles, vol. %	Mean CTE @ 700°C, ppm/°C	Average particle temperature, °C
570	-175	35	14.5	1750
630	-430	20	17.0	1600

Current Project Focus

Goal:

Determine factors affecting the mechanical stability of HVOF thermal spray coatings

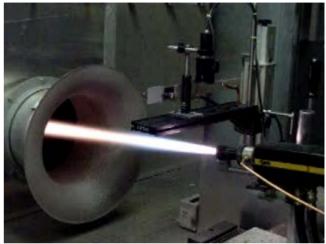
Tasks:

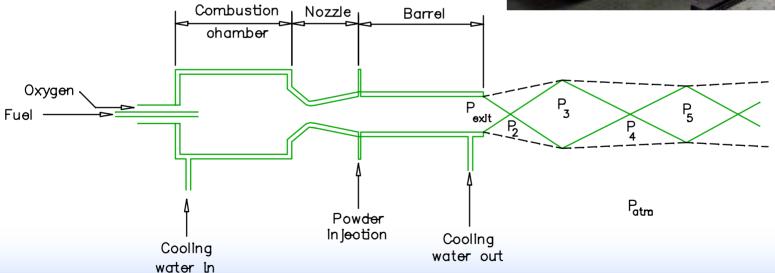
- Develop methods for detecting cracking and delaminations in coatings
- Characterize the influence of thermal spray and materials parameters on the mechanical stability of coatings
- Define coating failure

Parameters of Interest

Objective: Identify parameters that result in adherent, highdurability coatings

- Materials parameters
 - CTE of coating and substrate
 - Coating strength/ductility
 - Room temperature
 - Service temperature
 - Microstructure stability
- HVOF parameters
 - Chamber pressure particle velocity
 - Fuel/oxygen ratio particle temperature
 - Substrate temperature during spraying standoff distance, traverse speed, preheat/active cooling
 - Coating thickness # of passes


High-Velocity Oxygen Fuel (HVOF) Process


• Equivalence ratio (phi)

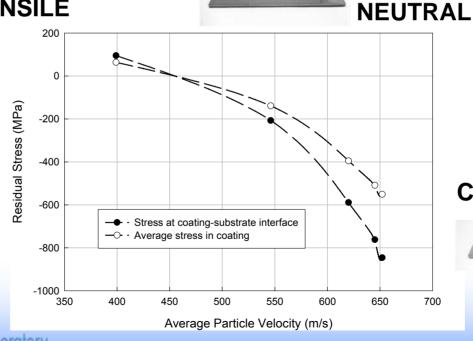
$$\Phi = \frac{Fuel / Oxygen}{(Fuel / Oxygen)_{Stoich}}$$

Combustion chamber pressure

 P_C a Total mass flow of O_2 and fuel

Control of Residual Stress

Total = Quench + CTE + Peening


- Substrate temp.
- Particle temp.
- CTE of particle

- Coating CTE
- Substrate CTE
- Processing temp.

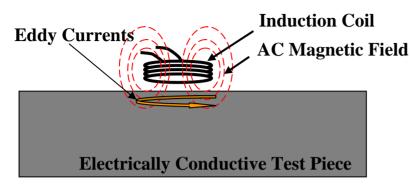
- Particle hardness
- Particle velocity
- Particle mass

COMPRESSIVE

Idaho National Laboratory

Materials Systems of Interest

- Coating materials
 - Fe₃Al
 - FeAI
- Substrate materials
 - Carbon Steel
 - Low-alloy ferritic steels
 - Advanced ferritic-martensitic steels (e.g. Grade 91)
 - Austenitic stainless steels
 - Ni-base alloys (e.g. alloy 600 or 617)



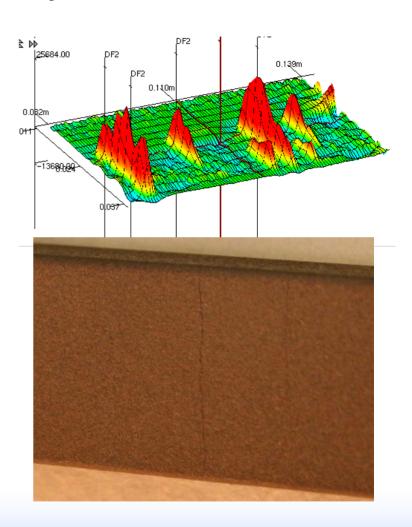
Coating Durability Tests

- Coating failure resulting from thermal cycling
 - Optical methods
 - Visual
 - Metallographic methods
 - Real time crack detection using eddy current methods
- Room temperature coating strength/ductility
 - Acoustic emission
 - Eddy current methods

Basics of Crack Detection using Eddy Current methods

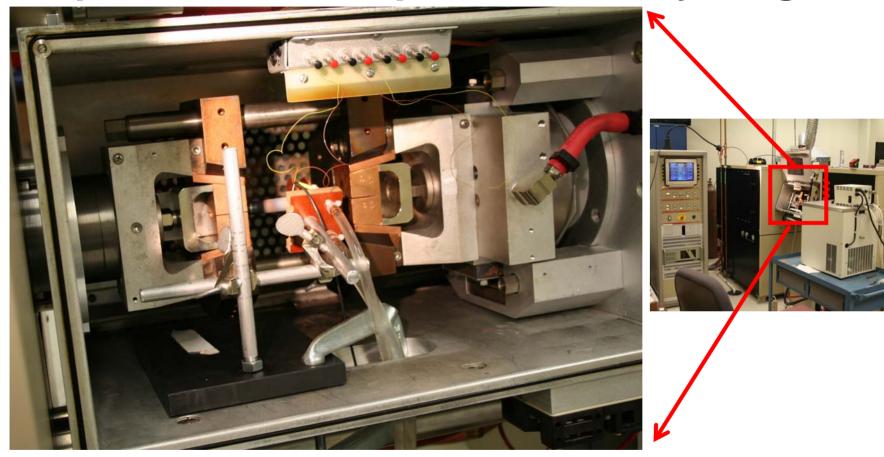
Senses Localized Electromagnetic Properties

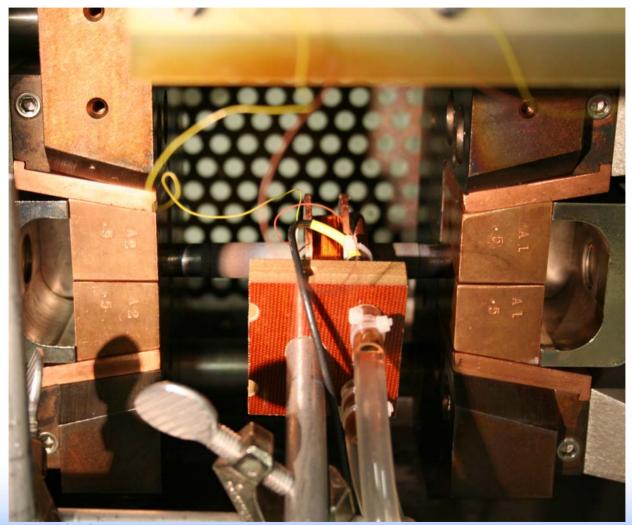
- •Electrical Conductivity
- Magnetic Permeability


Measure Induction Coil Impedance to Detect Defects

- •Disruptions of Eddy Current Field, e.g. cracks
- •Change In Bulk/Composite Electrical Properties, e.g. coating thickness or phase change

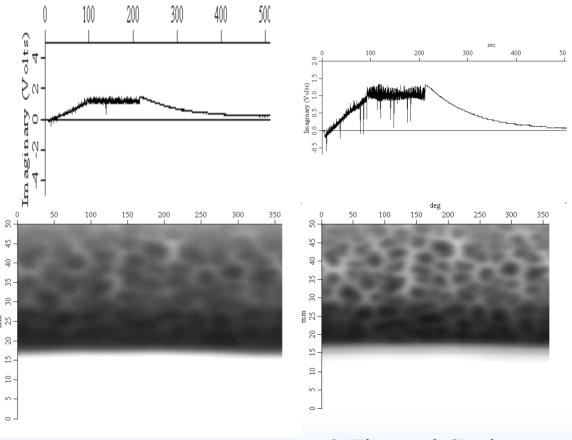
Typical Applications


Inspection of Steam Generator Tubing
Weld Inspection
In-service Inspection of Reactor Components and
Piping
Inspection of Aircraft Skin and Engine


Eddy Current Detection of Cracking in a Coating

Experimental Setup – Thermal Cycling

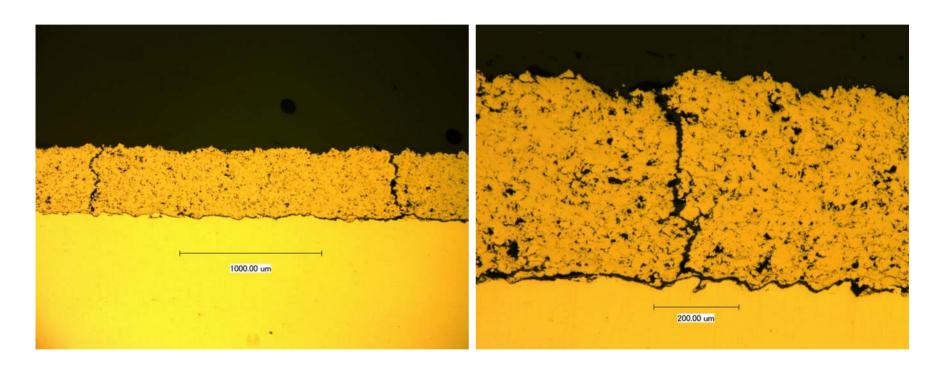
Experimental Setup – Eddy Current



Eddy Current Response During Thermal Cycling

FeAl Coating on Carbon Steel -Thermal Cycle (Room Temp. - 700° C)

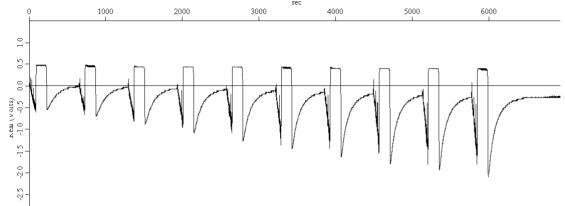
9

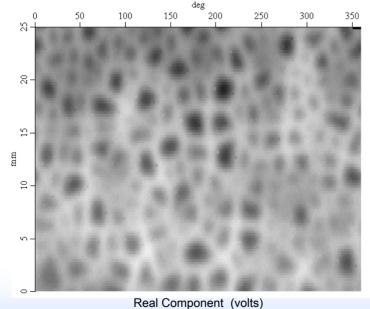


Real Component (volts) Eddy Current C-Scan Absolute Probe 500kHz

1 Thermal Cycle

2 Thermal Cycles


Optical Metallography of Thermally Cycled Coating

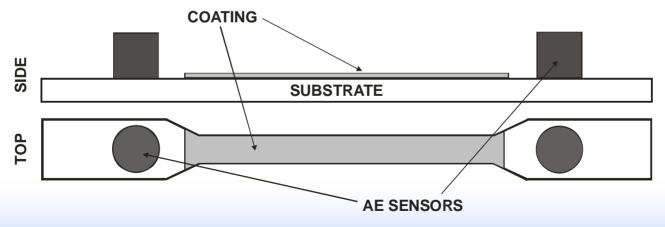


Eddy Current Scans

Encircling Absolute Eddy Current Coil Ten Cycles: Room Temperature - 800° C

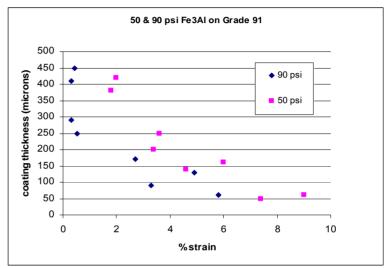
Eddy Current C-ScanAbsolute Probe 500kHz

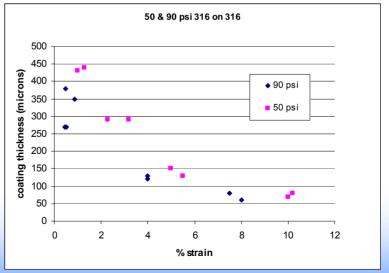
FeAl Coating on Carbon Steel Bar after Thermal Cycling


Future Plans for Thermal Cycling

- Add more eddy current coils to interrogate smaller areas – increased sensitivity
- Measure crack line length/unit area as a function of the number of thermal cycles
- Manipulate HVOF parameters and coating thickness to evaluate the effect on crack line length/unit area
- Address the detection and importance of delamination versus through-coating cracking.
 - Add thermal imaging to look for delamination in real time
- Investigate more relevant coating/substrate systems

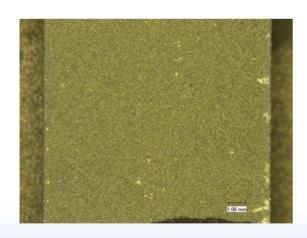
Previous Coating Fracture Testing


- Coating strain to fracture measured using acoustic emission monitoring
- 500 µm coatings applied to dogbone-shaped tensile specimen substrates
 - Reduced area section
- Two AE sensors attached to each end of substrate near grips
 - Used to locate events within coated gage section
- Coating cracking produces clear AE signals



Strain to failure as function of coating thickness results

- •Both Fe3Al and 316SS coatings showed improved ductility with decreasing thickness.
- •Same trend was also seen among different particle spray velocities.
- •In a few cases the strain at which the specimen cracked was observed visually as there was little or no acoustic emission.



Strain to failure fracture modes

- •Thick coatings tend to have one or two large cracking events with de-bonding.
- Thinner coatings fracture and flake.
- •Crack initiation appears to be at stress concentrator at 90° edge.
- •Bottom left coating is $50\mu m$ thick while top right is 130 μm the bottom right is 410 μm .

Strain to failure apparatus

- AE signal was not always consistent with degree of cracking observed in thin coatings
- Optical observation of cracking in many cases correlated with observed strain to failure

Future Strain to Failure Testing

- Round tensile bars
 - Reduced section
 - Uniform diameter
- Investigate factors affecting sensitivity of crack detection by acoustic emission
- Add eddy current for crack detection in thin coatings
- Study relevant coating/substrate systems

