
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

1

Beth L. Armstrong, Kevin M. Cooley, Larry R. Walker, and 
Bruce A. Pint 

Oak Ridge National Laboratory

22nd Annual Conference on Fossil Energy Materials
Pittsburgh, PA 
July 8-10, 2008

Development of Metallic Slurry 
Coatings



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

2

Outline

• Background: Advanced materials for fossil energy applications

• Problem:  Limitations of materials in aggressive environments

• Objective: Develop & fabricate low-cost protective systems

• Slurry processing of protective coating materials

−Why coat metal systems?
−Progress 

• Research Highlights

• Future Research

• Acknowledgements
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Advanced Materials for Fossil Energy Applications

•Temperatures up to 1550 oC

•Aggressive species include:
− Sulfur
− Nitrogen
− Trace heavy metals
− Alkali salts
− Steam
− Molten slag

•Protection systems will be necessary to extend lifetimes of 
materials in these environments

•The efforts in this project are aimed at developing a cost effective 
process for applying potentially protective coating systems 
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Objectives

− Dip coating selected as process
− Work will initially focus on ferritic martensitic alloys
− Aluminum diffusion in T91 for demonstration

• Commercial metal systems as substrate material
• Aluminum slurries (iron aluminide) as coating material

• Apply basic colloid principles developed in ceramic systems to 
the metallic systems

• Collaboration with other FE-ARM projects to ensure property 
relationships are addressed

• The development of low cost coatings for protection of 
corrosion and/or environmentally sensitive metallic substrates.

Key Issues
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Why Coat Metallic Systems

• Coal-fired power plant efficiency 
improvements requires increase in steam 
temperature and pressure

• Extensive steam side oxidation an issue 
for 9%Cr ferritic/martensitic alloys

• Aluminide coatings can significantly 
reduce the oxidation rate of ferritic and 
austenitic steels in exhaust/steam 
environment
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Why Coat Metallic Systems (2)

• Potential slurry coating advantages: 
− Substrate alloy can be customized for properties other 

than corrosion resistance
− Reduced processing costs
− Alternative substrate processing approaches possible, 

i.e., lower annealing temperatures, times, etc…
• Challenges:

− Physical, chemical and mechanical differences between 
substrate and coating can lead to detrimental interaction 
thus limiting lifetimes

− Others already “dip” coating but lag in understanding 
underlying principles affecting substrate/coating 
interface on resulting property lifetimes
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Historic Coating Perspectives

Niello Armor
(metal sulfides)

1550 A.D.

Flemish Medallion
(enameled)

1520-1530 A.D.

Samurai Sword (Hamon-refractory clay) 800 A.D.
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Present Day Coating Perspectives

• Pint, Haynes/ORNL
− CVD of model coatings on Fe-9Cr-1Mo

• Zhang/Tennessee Technological 
University
− Aluminide pack cementation and CVD coatings

• Agüero/INTA (Spain)
− Al slurry/brush coatings (commercial source) 

on P92, P22, P23 alloys
• “Commercial Sources”

− Sermatech (slurry aluminizing)
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Selection of Metallic System Based on 
Short Term and Long Term Benefits 

• Short term – ferritic martensitic alloys: 
− Development efforts have improved mechanical behavior 

while decreasing alloy’s resistance to steam oxidation
− Commercial coating systems with known HT oxidation 

resistance have been tested on these alloys and early results 
are promising

− Al slurries will be developed using colloidal techniques, and 
slurries will be applied to T91 alloy substrates

− Coatings will be heat treated at varying temperatures to 
determine processing parameters (potential joining metal 
forming and coating steps)

− Environmental exposure/testing and creep testing will be 
completed on coated alloys 

• Long term – Austenitic Alloys & Ni-based superalloys:
− Knowledge gained from the development of coatings for 

ferritic martensitic alloys will be applied here 
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Putting Scientific Principles to Practice

• Applied colloidal principles to develop slurry 
formulation
− Surface Charge (stability and dispersant selection)
− Rheology (flow behavior as a function of solids 

loadings, solvent selection and dispersant 
concentration)

− Effect of interface wetting and interactions
• Evaluate processing-property relationships   

− Solids concentrations and processing 
temperatures effect upon Al diffusion or aluminide 
phase formation
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Where Did We Leave Off Last?

• Aqueous coating approach was feasible
− Dispersant identified
− Al solids loadings identified (5 vol%)
− Flow behavior established for effective dipping and 

coating
− Wetting angle characterized as a function of processing 

conditions (water and solids)
• Sintering study completed

− 750°C/ 2 hours in argon formed “islands”
− 1050°C/ 2 hours in argon formed uniform infiltration 

across substrate
− Large grains evident at surface of 1050°C condition
− Formation of “unknown” material between diffusion 

zone and substrate
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Formation of Coating is Dependent Upon 
Sintering Temperature 

As Coated Surfaces “Uniform”

•5% Al Aqueous Slurry on 
T 91 Substrate

•Sintered at temperature for 
2 hours in argon

750°C

1050°C
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Initial Al Diffusion; Migration of Mo, N and 
Ni to Interface (750°C, 2 hrs/Argon)

Al C Cr

Mo N Ni

SiO

Fe
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Al Diffusion Zone More Uniform at  1050°C
(2 hrs/Argon)

Al Cr

Mo N SiO

Fe

•Oxygen at interface:  Is it a result of an aqueous slurry or 
other processing variable (Al powder, contamination)?

•Should an organic slurry be evaluated?
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Going Green: why organic
• No hydroxide formation at Al/alumina surfaces in 

solution 
− Potential source of oxygen at interface

• Higher solids loadings possible = more 
material/less “islands”
− Al solids loadings experiments (5, 10, 20 and 25 vol%) 
− Flow behavior established for effective dipping and 

coating
− Wetting angle characterized 

• Sintering study repeated
− 350°C/ 2 hours in argon formed “discrete particles”
− 750°C/ 2 hours in argon formed more uniform infiltration 

across substrate; cracking evident
− 1050°C/ 2 hours in argon formed large grains; more 

defected than aqueous counterpart
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Wetting Behavior:  Aqueous Vs. Organic 

Slurry
(%Al)

Contact 
Angle

5% – DI H2O 33.91

5% - Organic 0

10% - Organic ~ 2-5 

20% - Organic 8.8

25% - Organic 39.3

5% – DI H2O

20% - Organic
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Organic Al Slurry Microstructure Formation as a Function of 
Temperature “Similar” to Aqueous Systems at High Solids 

Loadings ( > 20 vol% Al)

10 μm10 μm

10 μm1050°C

•750°C:   wetting behavior uniform 
at 20 vol% Al loading (ie., no 

islands),  some cracking evident
•1050°C:  formation of porosity 

350°C 750°C
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Is Adequate Al Diffusion Occurring? 

5 vol% Al solids, 1050°C/2 hr in Argon
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Al Diffusion Profiles Similar at 1050°C 

20 organic vol% Al solids, 1050°C/2 hr in Argon
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Organic System 

20 organic vol% Al solids, 750°C/2 hr in Argon
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Removal of Organic Species Occurs 
Below Al Melt Temperature 

10 μm

350°C/2 hours in argon

Pre-sintered
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Island Formation Resulting from Wetting of 
Al melt at Temperature

10 μm
750°C/2 hours in argon

5% Aqueous
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Desired Wetting Behavior Will Enable Uniform 
Al Diffusion

750°C/2 hours in argon

10 μm20% Organic
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Summary of Results

• Al slurry microstructures are dependent upon
− Slurry variables (solvent, solids loading, wetting)
− Sintering conditions (temperature)

• Organic Al slurries optimized for higher solids 
loadings and improved wetting at room temperature

• Improved Al diffusion is feasible with processing 
controls
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Future Work

• Evaluation of slurry coating and process efficacy of 
metallic-based systems
− Refine Al diffusion profiles in slurry systems to meet model 

predictions and CVD results
− Test in simulated fossil environments

• Environmental and mechanical testing to obtain 
confirmation of performance and feedback

• Coordinate effort with metals/corrosion/oxidation 
projects to maintain relevancy
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Questions?
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• Demonstrated feasibility and flexibility of process
• Established “generic” process parameters

• Reduced sintering temperatures to minimize damage to substrate

Rare earth silicate coating on a complex-
shaped component (NT154 Si3N4 Blade)

•The process is flexible, i.e., it can be modified to 
incorporate a wide range of ceramic particles (e.g., 
mullite, BSAS, zirconia, rare-earth silicates and 
disilicates, aluminates, and aluminosilicates) and 
solvents (e.g., aqueous and organic)

- Complex-shaped components to be coated are dipped 
into a slurry (ceramic particles suspended in a solvent 
medium).

- As-dipped coatings are dried and heat treated at elevated    
temperatures to promote densification

- Resultant coating quality depends upon slurry rheology     
and wetting behavior

- Can be used as a patch for damaged coatings

Previous Ceramic Accomplishments



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

29

Tailoring Interactions Between Colloidal Building Blocks

200 nm

♦ must control interparticle forces to          
tailor structure, rheological properties, 
and drying 

Colloidal particles  -->  basic “building blocks”

h
V

h
V

h
V

indexed matched VdW forces steric-stabilized
highly screened depletion forces charge-stabilized

Hard sphere Attractive Soft Sphere 
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Can An Aqueous Solvent Be Utilized?

Al + 2H2O = 
AlO2

- + 4H+ + 3e-

Al2O3 + H2O = 
2AlO2

- + 2H+

Mx+ M(OH)x (s)
M2(CO3)x (s)

Polyacrylic acid is a potential dispersant

-40

-30

-20

-10

0

10

20

30

0 2 4 6 8 10 12

pH

m
V

Alumina
Al



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

31

Viscosity Increases With Increasing Al Content
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Al Solids and Contamination Can Alter 
Wetting Behavior of Slurry

Slurry
(%Al)

Contact 
Angle

1% – DI H2O 25.21

1% – Dist H2O 41.52

5% – DI H2O 33.91

5% – Dist H2O 57.39

Al slurry droplet on T91 substrate
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Elemental Diffusion Occurring at 
750°C (2 hrs/Argon) 

1

2

3

4
5Number Element

1 Al
2 Al, Mo, Cr
3 Al, Fe
4 Mo
5 Al, Cr, N
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