Surface Modifications for Oxidation Resistance

David E. Alman

Paul D. Jablonski

Office of Research & Development

National Energy Technology Laboratory

Accomplishments

- Surface treatment developed at NETL based on CeO₂
 - Applied to over 50 commercial and experimental alloys including; T430, T441, Crofer22APU.
 - For comparative purposes applied other RE surface treatment that are described in the literature.
 - RE Treatments are effective in enhancing oxidation resistance.
 - Initiated long term testing to determine effectiveness.
 - ASR measurements and single-cell test indicate surface treatment can enhance SOFC performance.
 - Modified NETL treatment to use La₂O₃
- Investigated influence of Si levels on behavior of interconnect alloys
 - Oxidation as a function of Si level in T430 (objective is to determine critical Si-level).

Reactive Element (RE) Effect

- Well known that the addition of small amounts of RE (Ce, La, Y, etc) improves oxidation resistance
- Characteristics
 - Reduction in the oxidation rate
 - Change in scale growth mechanisms
 - cation transport → anion transport
 - Modification of scale microstructure
 - large columnar grains → small equiaxial grains
 - Stabilize Cr₂O₃ scales at lower Cr levels
 - Improvement in scale adhesion

Alloy	Fe	Cr	Mn	Si	Ti	AI	La
Crofer 22APU	Bal	22.0	0.5		80.0		0.06 La
ZMG232	Bal	22.0	minor:	Mn, Ni,	Zr, La		

RE Surface Additions

Melt addition

+ Elements added during ingot production (single manufacturing step)

Difficulty in melting (react with crucibles)

Surface concentration limited by solubility and diffusivity

Surface treatments

- + Rare Earth concentrated where needed (at surface)
- + Applied to any alloy
- (\$) "Extra" manufacturing step.
- ? Long term effectiveness (as with any coating or surface treatment)

Effect of RE on Oxidation

F1=Fe-22Cr-0.5Mn-0.1Ti Mischmetal is a combination of Ce, La and other RE

Cerium Surface Treatments

- Developed a combination of pack cementation and superficially applied coating technique (NETL).
 - Coat surface with a slurry mixture: CeO₂ and halide (NaCl) activator.
 - ➤ Heat (900°C) in a controlled atmosphere (x10⁻³Torr)
 - ➤ Residual "pack" coating is washed off the surface.
- Applied treatment described by Hou & Stringer (H/S).
 - ➤ J. Electrochem. Soc., Vol 134, No. 7, July 1987, pp. 1836-1849.
 - ➤ Coupons heated to 200°C were coated with a **cerium-nitrate** slurry (10w/o nitrate adjusted with HNO₃ to pH=2), followed by heating in air at **400°C** to decompose to CeO₂.
 - >Surface also cleaned in water after treatment.

Surface After Treating (CeO₂-NETL)

 The surface treatment pre-oxides the surface. Ce-rich oxide forms at the gas-substrate surface. A Cr-Mn oxide forms underneath the Ce-rich oxide.

Crofer+Ce (NETL)

Thermodynamics

 CeO_2 - Fe - Mn - Cr 800°C, mole Cr/(CeO₂+Fe+Mn) = 0.2

FactSage™

CeO₂

CeO₂ reacts with Cr during treatment to form CeCrO₃

Fe(s), CeCrO₃, Ce₆O₁₁, Ce₁₈O₃₁, MnO

Mn

Fe

Surfaces After Treating

CeN-based (H/S: 400°C)

CeO₂-based (NETL:900°C)

Surfaces After Treating (Prior to Oxidation)

Crofer+Ce (NETL)

CeO₂-Based
Max Temp 900°C

Crofer+Ce (H/S)

CeN -Based

Max Temp 400°C

*not accurate due to edge effect (rounding of edge during sample preparation), however, indicates Ce is present at the surface.

Influence of Surface Treatment on Oxidation

Total Oxidation NETL Ce-Surface Treatment

Influence of Surface Treatment on Oxidation

Oxide Scale Formation

Influence of Surface Treatment on Oxidation

800°C-2000h-Air+3%H₂O

thinner oxide scales with surface treatments

Detailed scale microstructures can be found in D.E. Alman and P.D. Jablonski, "Effect of Minor Elements and a Cerium Surface Treatment on the Oxidation Behavior of an Fe-22Cr-0.5Mn (Crofer 22APU) Ferritic Stainless Steel, *International Journal of Hydrogen Energy*, accepted for publication (2006), currently available on line at www.sciencedirect.com.

Influence of Surface Treatment on Oxidation

800°C-4000hrs-Air+3%H₂O

Surface Treatments

- Slows scale growth
 - Scale microstructures were similar with NETL and H/S treatment methods.
- Minimizes internal oxidation.
 - Indicates slower oxygen diffusion through the scale.
- - formation of CeCrO₃ type oxide during transient oxidation.
 - Pre-oxidation during NETL treatment
 - (initial oxidation of H/S?)

Why?

- Scale microstructure is changed
 - (high diffusivity columnar to low diffusivity equiaxed)
- Ce in oxide changes diffusion through oxide.
- NETL-ORD IAES project at CMU to investigate influence of RE on transient oxidation.

Coatings on T430 Stainless Steel

Tested at Allegheny
800°C in air+7%H₂O

T430=Fe-17Cr-0.5Mn

Long Term Exposure

430 alloys produced at NETL Oxidation test in progress

	Fe	Cr	Mn	Ti	Si	Al
430-A	Bal	16.85	0.44	<0.01	<0.01	<0.01
430-B	Bal	17.03	0.47	<0.01	<0.01	<0.01
430-C	Bal	17.13	0.49	<0.01	<0.01	<0.01
430-D	Bal	17.11	0.52	0.080	<0.01	<0.01
Crofer	Bal	22.42	0.45	0.092	0.12	0.13

Long Term Exposure

Time (hrs)

430 alloys produced at NETL Oxidation test in progress

	Fe	Cr	Mn	Ti	Si	Al
430-A	Bal	16.85	0.44	<0.01	<0.01	<0.01
430-B	Bal	17.03	0.47	<0.01	<0.01	<0.01
430-C	Bal	17.13	0.49	<0.01	<0.01	<0.01
430-D	Bal	17.11	0.52	0.080	<0.01	<0.01
Crofer	Bal	22.42	0.45	0.092	0.12	0.13

Influnence of Si Content: T430

Electrical Performance

Lower ASR ✓ for SOFC interconnect

Measurements made by G. Xia & Z.G.Yang, PNNL

Samples pre-oxidized at 800°C for 100 hours prior to testing

Electrical Performance

ASR Measurements performed by PNNL (Z.G. Yang) 800°C, air; LSM cathode//LSM contact//interconnect

Laboratory Scale Testing

- "Button" cell test frames in Morgantown
- Fe-22Cr-0.5Mn steel current collector was attached to the cathode with Pt paste (a Pt mesh placed between interconnect and cathode).
- Pt mesh attached to anode.
- Ag current cables and voltage taps spot welded to current collectors

Laboratory Scale Cell Performance

0.7V/800°C; Fuel: $H_2+3\%H_2O$; Oxidant: Air +3% H_2O

Results published: D.E. Alman, C.D. Johnson, W.K. Collins, and P.D.Jablonski, "The Effect of Cerium Surface Treated Ferritic Stainless Steel Current Collectors on the Performance of Solid Oxide Fuel Cells (SOFC)," *Journal of Power Sources*, Vol 168, 2007, pp. 351-355.

Pre-Oxidized Current Collectors

• S.P. Simner, Anderson, Xia, Yang, Pederson, Stevenson, J. Electrochemical Soc., vol 154 (4), pp. A740-A745, 2005

Behavior of cell with Ce-treated interconnect (previous slide) similar to behavior of cells with pre-oxidized interconnects.

NETL Treatment with La₂O₃

CeN-based (H/S: 400°C)

La₂O₃-based (NETL:900°C)

CeO₂-based (NETL:900°C)

composition is at%

Effect of Rare Earth

Initial Conductivity: ASR Experimental Setup

Electrical Performance

Summary

- RE surface treatments effective in improving oxidation resistance.
 - Applied to ferritic stainless steels for interconnect application (Crofer and Type 430).
 - Both Ce-based methods (NETL and H/S) were effective.
 - Thinner oxide scales with treatment.
 - Thinner internal oxidation zone.
 - La modification to the NETL method was effective.
 - ASR measurements indicate that slower scale growth will enhance SOFC performance.

On-Going and Future Work

- Continue long term exposures on Ce- and Latreated samples
 - to determine if and when breaks-down occurs
 - accelerated tests
 - Longer term ASR (or cell tests)
- Continue investigation influence of Si content
 - Determine critical Si level (oxidation and ASR)
 - Low cost production of low Si steels using recycled scrap (develop innovative slag additives to getter Si during metling).

Experimental Alloys and RE Surface Treated Materials Available For Evaluation by SECA Participants

Thermal Treatment (TC) Only is *Ineffective*

