SOFC Operation on Hydrogen and Coal Gas in the Presence of Phosphorus, Arsenic and Sulfur Impurities

Olga A Marina, Larry R Pederson, Danny J Edwards, Chris W Coyle, Jared Templeton, Mark Engelhard, Z Zhu

Contract Manager: Heather Quedenfeld

8th Annual SECA Workshop, San Antonio, TX, August 9, 2007

Outline

- Objective
- Experimental Results
- Post-mortem cell investigations using SEM/EDS, TEM, EBSD, XPS, ToF-SIMS, and **XRD**
- Summary

Objective and Approach

- Evaluate performance of SOFCs operating on coal gas assuming warm gas clean-up
- Phosphorus, arsenic, and antimony are potentially the most harmful to the Ni/YSZ anode because of possible second phase formation with Ni
- Studies also were performed with key contaminants in hydrogen to aid in poisoning mechanism understanding
- Adsorption studies on small Ni, Ni/YSZ, Ni/SDC coupons were performed to determine the interactions between Ni and P or As as a function of exposure time

Schematic of Button Cell Test Stands

Test Conditions:

- 700 and 800°C
- Fuel (at equilibrium): H₂/H₂O = 97/3 or H₂/CO/CO₂/H₂O = 30/23/21/26
- Initially preconditioned in H₂ at 0.7 V for 24-30 hours followed by 0.5 A/cm² in H₂ or coal gas for ~100 hours
- All impurities were added after water bubbler
- Tested at a current of 0.5 A/cm²

Standard Ni/YSZ anode:

- 50 vol% Ni (solids)
 active anode (~ 8 μm)
- 40 vol% Ni (solids) bulk anode ~ 800 µm thick

Battetle

U.S. Department of Energy 4

SOFC Performance at 800°C in Coal Gas with 2 ppm of PH₃

- PH₃ exposure leads to cell degradation,
 - ~0.13-0.2%/hr increase in ASR
- This degradation is irreversible
- Cells continue to degrade after PH₃ removal from the fuel

Effect of Phosphorus on Cell Performance

- Power loss onset occurs more rapidly at 700°C
- After onset, degradation rates do not appear to be significantly different at 700 and 800°C

% Power retention calculated after the impurity introduction over power before impurity introduction

More Rapid ASR Increase in Coal Gas

Effect of Arsenic on Cell Performance

Slow degradation (~1%/100 hr) in the presence of 1 ppm of As in both H₂ and coal gas

1 ppm of AsH₃

Effect of P and As on Cell Resistance

Change in R _{ohmic} is more significant for AsH₃ exposure

U.S. Department of Energy 9

Battelle

Effect of Sulfur on Cell Performance: Baseline for Tests with Contaminants

- Rapid initial degradation (ca. 15%) during first 30 hours in both H₂ and coal gas
- ➤ 2nd stage degradation rate (0.06%/hr in H₂ and 0.26%/hr in coal gas)

Synergistic Effect of P+As+S Contaminants in Coal Gas

- In the presence of S, initial drop is ca. 15% and appears to be independent of other impurities
 - Effect of S is predominant over first 30 hours
- S-related 2nd stage degradation is suppressed by the presence of P and As
- 2nd stage degradation is similar to that in P

1 ppm of AsH_3 , 1 ppm of H_2S , 2 ppm of PH_3

Ni Contact Layer Surface Under the Fuel Inlet after 381 hr Test with 2 ppm of PH₃

All surface Ni under the fuel inlet is converted into Ni₃P. Surface Ni away from the fuel channel is present as the metal.

Spectrum	P (at%)	Ni (at%)
Spectrum 1	31.00	69.00
Spectrum 2	30.89	69.11
Spectrum 3	32.67	67.33
Spectrum 4	24.69	75.31

Ni₃P (TEM & XRD confirmed)

381 hr test in $H_2/H_2O=97/3$ with 2 ppm of PH_3 at 800°C

acific Northwest National Laboratory
U.S. Department of Energy 12

Cross Section of Top Ni/YSZ Layer after381 hr Test with 2 ppm of PH₃

Ni K SERIES

Current Collecting Wire after 381 hr Test with 2 ppm of PH₃

Outer layer of the wire is converted into phosphides

100µm

Electron Image 1

EBSD Reveals Ni₅As₂ Formation after 70 hr Test with 1 ppm of AsH₃

70 hr test in $H_2/H_2O=97/3$ with 1 ppm of As H_3 at 800°C

Cross Section of Top Ni/YSZ Layer after 700 hr Test in Coal Gas with PH₃ + H₂S + AsH₃

Ni has two phase regions, one rich in As (ca. 45 μm) and the other rich in P (150 μm).

ific Northwest National Laboratory
U.S. Department of Energy 16

Surface Layer after 700 hr Test in Coal Gas with PH₃ + H₂S + AsH₃

Ni is converted into a mix of Ni₅As₂ and Ni₃P

Ni Grain Surfaces Uniformly Covered with P Throughout Ni/YSZ

This is likely an adsorption layer undetectable by SEM/EDS

ToF-SIMS line-scan of the cross-section of button SOFC after test at 800°C in coal gas with H₂S, PH₃ and AsH₃.

High resolution photoemission spectra of the P 2p region

Surface Probe Shows Presence of Adsorbed Sulfur on Ni

- Ni/YSZ anodes tested in coal gas with H₂S have higher S concentrations than the reference.
- No second Ni-S phase found

Post Test Analysis Summary: Ni Interactions with P, S, and As

- S, P, and As adsorb on the Ni surface
- ► Affinity for Ni increases in the order S < P < As
 - Phosphorus displaces absorbed sulfur
 - Arsenic displaces adsorbed phosphorus
- Unlike sulfur, P and As form secondary phases, nickel phosphides and nickel arsenides. This transformation is irreversible.

Summary

- Ni/YSZ anodes were tested in simulated coal gas with 1 ppm of H₂S, 2 ppm of PH₃ and 1 ppm of AsH₃ in various combinations at 700-800°C for up to 800 hours.
- ▶ Initial cell degradation, ~ 15 % of the power density, is attributed to the presence of sulfur (effect on the anode resistance).
- ➤ Second stage degradation, 0.01-0.07%/hr, is P and As related and is due to the increase in the ohmic resistance and electrode resistance.
 - Ni contact paste, wires and Ni in the top Ni/YSZ later under the fuel inlet were severely affected by the presence of 2 ppm of PH₃. Surface and bulk (~ 150 μm) Ni₃P was formed during 700 hours test at 800°C.
 - Ni₃P showed extensive agglomeration and self-crystallization followed by the densification of the upper Ni layer. Similar grain orientation of Ni₃P suggests partial liquefaction and re-solidification as a single, continues grain.
 - A nickel deficient layer was formed in the upper part of the Ni/YSZ affecting the Ni percolation.
 - Surface Ni₅As₂ was formed after exposures to 1 ppm of AsH₃ at 800°C. Arsenide formation alone had insignificant degradation over 700 hour test because of strong Ni-As interaction near the surface (and not at the active interface).

Acknowledgements

- ➤ Support for this work is provided by the US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory through the SECA Program.
- ➤ We would like to acknowledge NETL management team for helpful discussions.

Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle.