

Power Electronics for Fuel Cell Based Power Generation Systems

Allen Hefner NIST

(NIST/DOE Interagency Agreement)

Outline

- I. Introduction
 - II. Technology Impact Analysis
 - **III.** Component Technologies
 - IV. Power Converter Architectures
 - V. Cost Estimates and Simulation

I. Introduction

Objective:

- High-Megawatt Power Conditioning Systems (PCS) are required to convert:
 - from power produced by Fuel Cells (FC) in future power plants
 - to very high voltage and power required for delivery to the grid

Motivation:

- DoE SECA cost goals:
 - FC generator plant \$400/kW
 - including \$40-100/kW for PCS
- Today's PCS cost (Fuel Cell Energy Inc.):
 - FC generator plant \$3,000/kW
 - including \$260/kW for power converter (to 18 kV AC)

Fuel Cell Plant PCS

\$40-\$100 / kW for PCS is a difficult stretch goal!

Federal and Industry PCS Program Coordination

- NIST/DOE Inter-Agency Agreement
 - NIST lead effort to determine expected impact of advanced technologies on future FC power plant PCS
- Inter-Agency Power Group (IAPG)
 - Form an interagency task group for high-megawatt power converter technologies under IAPG
- Industry Roadmap
 - Initiate a roadmap process to offer guidance for further development of high-megawatt PCS technology
- National Science Foundation (NSF)
 - Establish power electronics curriculums and fundamental research programs for energy systems technology

Outline

- I. Introduction
- II. Technology Impact Analysis
 - **III.** Component Technologies
 - IV. Power Converter Architectures
 - V. Cost Estimates and Simulation

II. Technology Impact Analysis

 Perform Independent Analysis of technologies that may reduce cost of PCS for future FC Power Plants

Methodology for impact study:

- Include input from broad power electronics, power component, and power engineering communities
- Classify power converter architectures, topologies, and component technologies that may reduce cost
- Perform tabular calculations of cost for each option using estimated advantages of new technologies
- Use component modeling, and circuit and system simulations to verify and refine calculations

Methodology for Impact Analysis:

High Megawatt Converter Workshop: http://www.high-megawatt.nist.gov/workshop-1-24-07/

Parameters of Impact Analysis

- Boundary conditions and performance parameters:
 - FC Stack: center tap ~700 V DC, 0.6 MW
 - Require individual FC stack current control with low ripple
- Power electronics and/or transformer to 18 kV AC, and transformer from 18 kV AC to 300 kV AC transmission
- Converter cost components:
 - Semiconductors
 - Module Packaging and Interconnects
 - Cooling System
 - Magnetics: Filter Inductors and
 - **HF** voltage isolation transformers
 - 60 Hz Transformer up to 18 kV
 - Breakers and Switchgear

300 MW PCS

Outline

- I. Introduction
- II. Technology Impact Study
- III. Component Technologies
 - IV. Power Converter Architectures
 - V. Cost Estimates and Simulation

A. Low-Voltage Semiconductors

- Baseline: 1200 V silicon IGBT with silicon PiN diode
 - 1200 V is sweet spot for silicon IGBTs at 15 20 kHz switching due to speed voltage trade-off, high volume, and maturity
 - Mature technology; cost may not continue to decrease
- 1200 V silicon IGBT switch with SiC Schottky diode
 - More efficient at 20 kHz → less loss, lower heat removal cost
 - → lower temperature and longer life
 - Higher frequency → less filter inductor cost
 - Emerging commercial technology; cost continues to decrease
 - What is cost break-point for 1200 V SiC Schottky diode?

B. High-Frequency Transformer

- Baseline: Traditional Ferrite Material
 - Expensive processing for high-power, high frequency (HF)
 - Mature technology; cost may NOT decrease
- HF magnetic materials: Nano-crystalline or Metglas®
 - Size and cost decrease inversely proportional to frequency
 - Emerging commercial technology; cost continues to decrease
 - What is cost break-point for HF magnetic material?

C. <u>High-Voltage Semiconductors</u>

- Baseline: High-Voltage (HV) Silicon devices (IGBT, IGCT)
 - Typically ~6.5 kV blocking voltage maximum
 - Requires multi-level inverter for 4160 V AC
 - Low switching frequency (< 500 Hz) requires larger filter
- High-Voltage, High-Frequency SiC Switch and Diodes
 - > 12 kV, 20 kHz SiC MOSFET switch and SiC Schottky diode:
 - Less inverter levels due to higher voltage
 - Less loss, lower heat removal cost
 - Less filter inductance required due to higher frequency
 - > 15 kV, 5 kHz SiC IGBT switch and SiC PiN diode:
 - Higher current per die than SiC MOSFET, therefore lower cost
 - What is cost break point for HV-HF SiC power semiconductors?

DARPA HPE MOSFET

High Speed at High Voltage

A. Hefner, et.al. "Recent Advances in High-Voltage, High-Frequency Silicon-Carbide Power Devices," *IEEE IAS Annual Meeting,* October 2006, pp. 330-337.

Outline

- I. Introduction
- II. Technology Impact Study
- **III.** Component Technologies
- IV. Power Converter Architectures
 - V. Cost Estimates and Simulation

IV. Power Converter Architectures

A. Low-Voltage Inverters (460 V AC):

- Require high current for each 0.6 MW FC
- and large number of Inverters for 300 MW Plant

B. Medium-Voltage Inverters (4160 V AC):

- Lower inverter current for each 0.6 MW FC
- Combine multiple FCs with single high power inverter

C. <u>High-Voltage Inverters (18 kV AC):</u>

- Replaces 60 Hz transformer with isolation from HF transformer
- Cascade enables: 18 kV AC inverter by series connection, and interleaved switching decreases losses and filter requirement

A. Low-Voltage Inverters

480 V AC Inverter, 60 Hz Transformer to 18 kV AC

- 1) <u>First Generation:</u> ~350 V FC, DC-DC to 750 V, 480 V AC Inverter
- 2) <u>Baseline:</u> ~700 V FC (center tap), DC-DC to 750 V, 480 V AC inverter
 - 1200 V is "Sweet spot" for silicon semiconductors due to market size and speed voltage trade-off
- 3) Present Generation: ~700 V FC, 480 V AC Inverter
 - Fewer semiconductors due to single stage converter

1) First Generation

2) Baseline

3) Present Generation

B. Medium Voltage Inverters

4160 VAC Inverter 60 Hz Transformer to 18 kV AC

MV DC Common Bus:

LV-to-MV DC-DC converters:

- Requires high voltage-gain DC-DC converter, HF transformer
- HV SiC diode rectifiers substantially reduce loss!

Common MV inverter:

- Silicon semiconductors require multiple levels for MV
- HV SiC semiconductors provide lower switching loss

1) MV DC Common Bus: LV-to-MV DC-DC, Common Inverter

C. <u>High Voltage Inverters</u>

18 kV AC Inverter, No 60 Hz Transformer!

High-Voltage Cascade:

Series connected, voltage-isolated LV-to-MV DC-DC

Requires HV-HF isolation and output for each phase

Medium-Frequency, phase-interleaved inverters

- > Y-Configuration:
- 6.5 kV Silicon semiconductors require 6 levels
- 12 kV SiC semiconductors require 3 levels

HV-Cascade: Isolated MV-DCDCs, Interleaved MV Inverters

Outline

- I. Introduction
- II. Technology Impact Analysis
- **III.** Component Technologies
- IV. Power Converter Architectures
- V. Cost Estimates and Simulation

V. Cost Estimates and Simulation

- A. <u>Cost Estimate:</u> Tabular calculation of cost for each PCS option using estimated advantages of new technologies
- B. <u>Simulation:</u> Component modeling, and circuit and system simulations to verify and refine calculations
 - Physics based models for component technologies
 - Simulation schematics for power converter topologies

A. Tabular Calculations of Cost

- Future, high-volume costs: 5 to 10 years, 1 GW/yr
- Advanced Technology Goals and Cost Break Points
 - 1.2 kV Schottky diodes: \$0.2/A
 - 12 kV Schottky diodes: \$1/A
 - 12 kV Half-bridge SiC-MOSFET/SiC-Schottky: \$10/A
 - 15 kV SiC-PiN: \$0.4/A
 - 15 kV SiC-IGBT/SiC-PiN Module: \$3.3/A
 - Nano-crystalline transformer: \$2/kW
 - Power Electronics DC-DC, DC-AC: 150 % overhead
 - 60Hz Transformer and Switchgear: 50 % overhead

Preliminary \$/kW: LV Inverter

Inverter Voltage	Low	Low	Low	Low	Low
Converter Stages	One	One	Two	Two	Two
LV-SiC Schottky		yes	yes	yes	yes
HF Transformer				Ferrite	Nano
60 Hz Transformer	yes	yes	yes	yes	yes

Risk Level: Low Moderate Considerable High

Preliminary \$/kW: MV & HV Inverter

Inverter Voltage	Medium	Medium	High	High	High
HV-SiC Diode		Schottky	Schottky	Schottky	PiN
HV-SiC Switch		MOSFET		MOSFET	IGBT
HF Transformer	Nano	Nano	Nano	Nano	Nano
60 Hz Transformer	yes	yes			

Risk Level: Low Moderate Considerable High

B. Component Modeling, Circuit and System Simulations

- Physics based models developed for advanced component technologies
 - 12 kV SiC Junction Barrier Schottky Diode (JBS)
 - 12 kV SiC Power MOSFET
 - 1200 V SiC Junction Barrier Schottky Diode (JBS)
- Models validated for static and switching characteristics
- Simulation schematics for power converter topologies

Model Validation for 12 kV, 100 A SiC Junction Barrier Schottky Diode

Forward Characteristics

Reverse Recovery Switching

Model Validation for 12 kV, 100 A SiC Power MOSFET

Forward Output Characteristics

Inductive Load Switching

HF Transformer versus 60 Hz Transformer

Low Voltage Inverter Schematic

Lower Voltage Inverter Simulations

High-Voltage Y-Connected Cascade Inverter Schematic

High-Voltage Y-Connected Cascade Inverter Simulation

Conclusion

- The SECA goal of \$40-\$100 / kW for the Fuel Cell Plant PCS is a difficult stretch goal.
- Federal and Industry efforts have been initiated to address High-Megawatt PCS requirements.
- Analysis of technologies that may reduce cost of PCS for fuel cell power plants:
 - high-frequency magnetic materials
 - high-voltage high-frequency SiC semiconductors
 - 1200 V SiC Schottky diodes
- High voltage inverter may permit galvanic isolation via low cost HF transformer instead of costly 60 Hz transformer

Acknowledgments

I would like to acknowledge Sam Biondo (DOE-Fossil Energy), Don Collins (DOE - NETL), Wayne Surdoval (DOE-NETL), Frank Holcomb (ERDC-CERL), Ron Wolk (Consultant), Heather Quedenfeld (DOE - NETL), and Jason Lai (VT-FEEC) for organizing activities to address PCS needs for fuel cell power plants, and in addition the participants of the Workshop on High Megawatt Converters for providing technical guidance.

I would also like to acknowledge Jason Lai (VT-FEEC), Hao Qian (VT-FEEC), Angel Rivera-López (NIST), Tam Duong (NIST), José M. Ortiz-Rodríguez (NIST), Colleen Hood (NIST), and Robert Michelet (NIST) for technical contributions to the presented PCS cost analysis effort.