Interconnect Alloys Metallurgy and Manufacturing

J.M. Rakowski ATI Allegheny Ludlum

Introduction

- Environmental exposure conditions can lead to oxidation/functional degradation of interconnects and adjacent components
- Alloy and process development to reduce contribution to SOFC performance degradation

Overview

- Phase I results and timeline
- Current focus of Phase II
 - Silicon removal trials
 - Oxidation of commercially available ferritic stainless steels
 - Production of novel ferritic stainless steels
- Ongoing work

Phase I Review

Results to Date - Phase I

- Timeline
 - 12 month period
 - Calendar year 2006
- Proof of concept for solid-state silicon removal
- Melting, processing, and testing of concept alloys
- Testing/analysis of commercially available stainless steels
- Testing/analysis of various oxidation-resistant coatings on commercially available stainless steels

Phase II Status

Silicon in Stainless Steels

- Silicon is present in most readily available stainless steels
- By-product of the AOD steelmaking process
- Commercially available stainless steels generally contain approximately 0.5 wt. % silicon

Silicon Removal Trials

- High-temperature pre-treatment with optional chemical component
- Tested using a variety of Fe-Cr stainless steels (T430, T439, T441HP™ alloys)
- Formation/removal of an SiO₂ surface film

Effect on ASR - Prior Work

ASR measurement temperature (°C)

samples pre-oxidized in air for 500 hours at 800°C

Silicon Removal

- Production of larger test panels
 - Third party testing and analysis
 - Internal evaluation
- Characterization of treated surface
- Oxidation testing
- Long-term electrical evaluation

Post-Treatment Characterization

T430 post-treatment samples AES analysis with sputter depth-profiling

- Thermally activated process
- More effective for thinner samples
 - Absolute quantity of Si removed is a function of temperature, surface area
 - Amount of silicon available for removal (reservoir) is a function of substrate thickness
- Evaluation
 - Rolling trial (0.08-0.15 mm thick T430 samples)
 - Calculations

starting with an "infinite sheet"

Establish volume element

Set surface area = 1

$$2w^2 = 1$$

$$V_{M} = W^{2}X_{M} = 0.5X = M_{M}/\rho_{M}$$

Allow the sample to oxidize on both sides

$$V_{ox} = 2w^2t_{ox} = M_{ox}/\rho_{ox}$$

 M_{ox} allows for the determination of Si consumption / residual M_{Si} in the volume element after the formation of an oxide layer of thickness t_{ox}

Allegheny Technologies

Oxidation Testing

- Oxidation testing carried out in a variety of environments
 - Ambient air
 - Air + 10% water vapor
 - 4%H₂ + 10% water vapor in argon carrier
- Testing using duplicate specimens at 800°C
 - T430, T430 De-Si
 - T439, T439 De-Si
 - T441HP™ alloy, T441HP De-Si
 - E-BRITE® alloy

Alloy Compositions

Element	T430 \$43000	T439 alloy \$43035	T441HP™ alloy S44100	E-BRITE® alloy S44627
С	0.015	0.015	0.015	0.001
Mn	0.4	0.4	0.3	0.05
Si	0.4	0.7	0.5	0.2
Cr	16.5	17.5	17.5	26.0
Al	0.05	0.05	0.05	0.05
Мо	-	-	-	1.0
Cb	-	-	0.46	0.15
Ti	-	0.4	0.2	-
N	0.015	0.015	0.015	0.005

Oxidation Testing

- Type 430 exhibited good oxidation resistance in ambient air but one sample (desiliconized) exhibited breakaway oxidation in humidified air.
- Type 439 exhibited a consistent tendency for spallation in the as-received condition. Spallation did not occur in desiliconized Type 439.
- T441HP™ alloy exhibited the best general resistance to oxidation.

Oxidation Testing

- E-BRITE® alloy exhibited a tendency towards weight loss in humidified air, which is consistent with past work (this alloy was not tested in ambient air).
- The exposure to simulated anode gas (Ar-H₂-H₂O) was the least aggressive of all of the test exposures. De-siliconization was uniformly beneficial in the SAG composition tested.

Time (h)

Time (h)

Novel Ferritic Stainless Steels

- Currently processing a set of lab-melted VIM heats
- Optimized compositions
 - High- and low-chromium variants
 - Minor element control
 - Advanced processing

Summary - Alloy Characterization

- Oxidation screening testing is complete
- Long-term oxidation testing ongoing
- ASR evaluation of a matrix of alloys has been initiated

Summary - Current Development

- Compositional matrix melted and processed to sheet
- Silicon removal trials ongoing

Acknowledgements

- This work was funded in part by DOE Award Number DE-FC26-05NT42513 Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells
- Lane Wilson, Wayne Surdoval, Ayyakkannu Manivannan (PM)

Allegheny Technologies

Building the World's Best Specialty Metals Company

for additional information...

www.alleghenytechnologies.com www.alleghenyludlum.com

James M. Rakowski
Senior Associate, M&PD
+1.724.226.6483
jrakowski@alleghenyludlum.com