High Temperature Glass Seal

Y-S Chou, J.W. Stevenson, X. Li, G. Yang, and P. Singh K2-44, Materials Division Pacific Northwest National Laboratory

Funded under the SECA Core Technology Program through US Department of Energy's National Energy Technology Laboratory

August 7-9, 2007, San Antonio, Texas

Outline

- Accomplishment of FY07
- Mechanical strength evaluation: plain crofer, aluminized, spinel-coated
- Electrical stability evaluation: aging under DC loading
- Summary
- Future work

FY07 Accomplishment

- Completed seal strength evaluation of high-temperature glass. Evaluated pre-oxidation, aging, coating, and environmental effects on strength.
- ► Without coating, strength would degrade if a thick Cr₂O₃ oxide layer present or aged in air. No strength reduction if aged in reducing gas. Cause for strength degradation was SrCrO₄ formation.
- Alumina coating is effective in blocking Cr; however, the deposition process needs to be optimized to minimize overdose.
- Spinel coating showed best results with minimum strength reduction even aging in air.
- Tested conventional and high-temperature sealing glasses in SOFC environment and 0.7 V DC loading. Conventional glass showed severe Fe diffusion and rapid increase in conductivity (830°C/~80hr), while high-temperature glass showed excellent electrical stability over ~1200hr at 850°C.

High-temperature sealing glass

- 1. Increase contact bonding strength
- 2. Increase thermal stability
- 3. decrease interfacial reactions

Mechanical strength evaluation

- 1. Effect of pre-oxidation: Cr₂O₃ layer thickness
- Effect of different protective coating: Al₂O₃, (Mn,Co)₃O₄
- 3. Effect of environment: oxidizing, reducing
- 4. Accelerated condition:
- ◆ 850°C/500h in air
- 850°C/250h in 30%H₂O, 70%(2.7%H₂/Ar)

Interfacial tensile testing

Pre-oxidized crofer

To mimic long-term oxidation 1200°C resulted in pores underneath Outside discrete and non-uniform (Mn,Cr) oxide, inside dense and continuous Cr_2O_3 -rich oxide $\text{T}<0.5\mu\text{m}$ (800°C/2h)

Effect of pre-oxidation on tensile strength

Load-displacement curve showed typical brittle failure

All showed brittle failure: coating, aging, oxide layer thickness, environment

Mixed fracture

As-received

1000°C/2h Pre-oxidized

Fracture initiated mostly from edge flaws

Effect of aging and environment

Air: 850°C/500h

Wet and reducing: 30%H₂O, 70%(2.7H₂/Ar) 850°C/250h

Fracture surface of aged sample

850°C/500h air

850°C/250h reducing gas

Presence of substantial amount of SrCrO₄

Aluminized crofer showed no chromate formation

Tensile strength of aluminized crofer from pack cementation

Pack cementation, followed by heat-treatment in air

Sealing with aluminized crofer from vapor phase deposition

Vapor phase deposition followed by heat-treatment at 1000°C/2h air As-sealed coupons all fractured through glass.
Glass bonded well to aluminized crofer coupons.

Appreciable amount of Al diffusion

Issue of overdosing Al

Aluminizing by vapor phase deposition followed by heat-treatment at 1000-1100°C/2h air

RT seal strength of spinel-coated crofer/YSO75 glass

(Mn,Co)₃O₄ coated crofer22APU

Fracture surface of as-sealed Mn_{1.5}Co_{1.5}O₄-coated crofer22APU

Fracture through glass, not at the interface. YSO75 not fully coverage All 8 samples showed edge flaw

Fracture surface of air aged Mn_{1.5}Co_{1.5}O₄-coated crofer22APU

850°C/500 h air

Suggest 5 µm coating was not enough

Setup for resistivity measurement

Good electrical stability for HT glass on plain crofer22APU

Crofer(as-received)/glass/crofer(as-received) @ 0.7V

EDS showed substantial Fe diffusion

point	0%	Al%	Si%	Ca%	Cr%	Fe%	Ba%
1	43		1	1	50	4	1
2	44		27	16		1	12
3	43	20	24			1	12
4	47	3	16	6		7	21
5	44	1	5	2	11	28	9

G18 near air side after electrical stability test

Good electrical stability for HT glass on (Mn,Co)₃O₄-coated crofer22APU

Materials set evaluation in 2"x2" singel cell test @ 800°C

INDEC cell, SS441, spinel coating, LSM contact paste, aluminizing

Summary FY07

- ► Mechanical strength tests of M/G/M coupons showed strength degradation for uncoated crofer22APU only if aged in air or started with thick Cr₂O₃ surface layer.
- ► Aluminizing is effective in blocking Cr; however, overdosing would increase CTE for thin samples and leads to seal failure.
- ► (Mn,Co)₃O₄-coated crofer showed similar initial seal strength as plain crofer or aluminized ones. Minimal strength degradation when aged in air.
- ► HT glass showed very good electrical stability in SOFC and DC loading at 850°C up to ~1200h.
- ➤ Successful demonstration of 2"x2" single cell test at 800°C with candidate materials set: HT glass, spinel coating, SS441, and LSM contact paste.

Future work

- Materials set validation with single cell (2"x2") stack testing and standardize the design:
- Sealing glass: high-temperature, self-healing and composite.
- Metallic interconnect: SS441 (standard or low Si), crofer22APU
- 3. Protective coating: (Mn,Co)₃O₄, alumina
- Short-term (200-500h) performance test at 800-850°C
- Short-term thermal cycling test (800°C/24h, cool to RT)x10
- Collaboration with modeling work
- Strengthening of candidate high-temperature glass with reinforcement

